Phytoplankton blooms, an important indicator of severe eutrophication, are a globally significant consequence of anthropogenic activities and climate change on freshwater lakes. Shifts in microbial communities during phytoplankton blooms have been extensively investigated, yet we have a limited understanding of how distinct assembly processes underlying the temporal dynamics of freshwater bacterial communities within different habitats respond to the succession of phytoplankton blooms. To address this knowledge gap, we collected both water and sediment samples in a subtropical eutrophic lake over a complete period of phytoplankton blooms to assess the dynamics of bacterial communities and the temporal shifts in assembly processes. Our results showed that phytoplankton blooms strongly altered the diversity, composition, and coexistence patterns of both planktonic and sediment bacterial communities (PBC and SBC), but the successional patterns differed between PBC and SBC. PBC were less temporally stable under bloom-induce disturbances, with higher variations in temporal dynamics and greater sensitivity to environmental fluctuations. Furthermore, the temporal assembly patterns of bacterial communities in both habitats were mainly driven by homogeneous selection and ecological drift. In the PBC, the role of selection decreased over time, while ecological drift became increasingly important. Conversely, in the SBC, the relative impact of selection and ecological drift on community assemblages fluctuated less over time, with selection remaining the dominant process throughout the bloom.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2023.120252 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!