Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Representing reality in a numerical model is complex. Conventionally, hydraulic models of water distribution networks are a tool for replicating water supply system behaviour through simulation by means of approximation of physical equations. A calibration process is mandatory to achieve plausible simulation results. However, calibration is affected by a set of intrinsic uncertainty sources, mainly related to the lack of system knowledge. This paper proposes a breakthrough approach for calibrating hydraulic models through a graph machine learning approach. The main idea is to create a graph neural network metamodel to estimate the network behaviour based on a limited number of monitoring sensors. Once the flows and pressures of the entire network have been estimated, a calibration is carried out to obtain the set of hydraulic parameters that best approximates the metamodel. Through this process, it is possible to estimate the uncertainty that is transferred from the few available measurements to the final hydraulic model. The paper sparks a discussion to assess under what circumstances a graph-based metamodel might be a solution for water network analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2023.120264 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!