Recent evidence suggests that broad brain regions, not limited to the fronto-striato-thalamo-cortical circuit, play an important role in motor response inhibition. However, it is still unclear which specific key brain region is responsible for impaired motor response inhibition observed in obsessive-compulsive disorder (OCD). We calculated the fractional amplitude of low-frequency fluctuations (fALFF) and measured response inhibition ability using the stop-signal task in 41 medication-free patients with OCD and 49 healthy control (HC) participants. We explored the brain region that shows different association between the fALFF and the ability of motor response inhibition. Significant differences in fALFF associated with the ability of motor response inhibition were identified in dorsal posterior cingulate cortex (PCC). There was a positive correlation between increased fALFF in the dorsal PCC and impaired motor response inhibition in OCD. In the HC group, there was a negative correlation between the two variables. Our results suggest that the magnitude of resting-state blood oxygen level-dependent oscillation of the dorsal PCC is a key brain region for the underlying mechanisms of impaired motor response inhibition in OCD. Future studies should examine whether this characteristic of dorsal PCC affects other large-scale networks responsible for motor response inhibition of OCD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pscychresns.2023.111669DOI Listing

Publication Analysis

Top Keywords

response inhibition
36
motor response
32
brain region
12
impaired motor
12
dorsal pcc
12
inhibition ocd
12
response
9
inhibition
9
posterior cingulate
8
cingulate cortex
8

Similar Publications

Introduction: China implemented a dynamic zero-COVID strategy to curb viral transmission in response to the coronavirus disease 2019 (COVID-19) pandemic. This strategy was designed to inhibit mutation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19. This study explores the dynamics of viral evolution under stringent non-pharmaceutical interventions (NPIs) through real-world observations.

View Article and Find Full Text PDF

One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.

View Article and Find Full Text PDF

Light and dark biofilm adaptation impacts larval settlement in diverse coral species.

Environ Microbiome

January 2025

Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.

Background: Recovery of degraded coral reefs is reliant upon the recruitment of coral larvae, yet the mechanisms behind coral larval settlement are not well understood, especially for non-acroporid species. Biofilms associated with reef substrates, such as coral rubble or crustose coralline algae, can induce coral larval settlement; however, the specific biochemical cues and the microorganisms that produce them remain largely unknown. Here, we assessed larval settlement responses in five non-acroporid broadcast-spawning coral species in the families Merulinidae, Lobophyllidae and Poritidae to biofilms developed in aquaria for either one or two months under light and dark treatments.

View Article and Find Full Text PDF

CAFs-released exosomal CREB1 promotes cell progression and immune evasion in thyroid cancer via the positive regulation of CCL20.

Autoimmunity

December 2025

Department of Thyroid Head and Neck Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.

Background: Exosomes derived from cancer-associated fibroblasts (CAFs) can affect tumor microenvironment (TME) of thyroid cancer (TC). The cAMP response element binding protein 1 (CREB1) acts as a transcription factor to participate in cancer development. Currently, we aimed to explore the molecular mechanism of exosome-associated CREB1 and C-C motif chemokine ligand 20 (CCL20) in TC.

View Article and Find Full Text PDF

Netrin-1 (NTN1) is a laminin-related secreted protein involved in axon guidance and cell migration. Previous research has established a significant connection between NTN1 and nervous system development. In recent years, mounting evidence indicates that NTN1 also plays a crucial role in tumorigenesis and tumor progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!