Nine forms of cytochrome P-450 have been purified to electrophoretic homogeneity from human-liver microsomes. These include the enzymes involved in debrisoquine 4-hydroxylation, phenacetin O-deethylation and mephenytoin 4-hydroxylation, three reactions which are characterized by genetic polymorphism in humans. Evidence for the involvement of the above enzymes comes from reconstituted immunochemical inhibition studies with human-liver microsomes. These and other lines of evidence are consonant with the view that different forms of cytochrome P-450 are involved in the three reactions. The debrisoquine 4-hydroxylase has been studied most extensively in terms of its substrate specificity. In addition, an analogous rat enzyme shows some homology and serves as a useful model. The use of antibodies raised to the rat-liver enzyme in immuno-inhibition studies with human-liver microsomes provides a means of determining the extent to which this enzyme participates in other reactions. Translation of rat-liver mRNA in vitro yields the intact debrisoquine 4-hydroxylase; studies with human mRNA suggest a lower frequency than in rats. The basis for impaired catalytic activity in phenotypically poor human metabolizers appears to be an altered enzyme in all three cases, as opposed to a decreased level of a single enzyme. Using antibody screening of fusion proteins expressed in a cDNA library, it has been possible to isolate cDNA probes for all three of these cytochromes P-450 for use in screening individuals and ultimately determining the basis of these polymorphisms.

Download full-text PDF

Source
http://dx.doi.org/10.3109/00498258609050245DOI Listing

Publication Analysis

Top Keywords

human-liver microsomes
12
cytochromes p-450
8
p-450 involved
8
forms cytochrome
8
cytochrome p-450
8
three reactions
8
studies human-liver
8
debrisoquine 4-hydroxylase
8
enzyme
5
human-liver
4

Similar Publications

Acyl glucuronide (AG) is a reactive metabolite that causes idiosyncratic drug toxicity (IDT). Although the instability of AG is used to predict the IDT risk of novel drug candidates, it sometimes overestimates the IDT risk. We investigated whether the rate of enzymatic AG hydrolysis in human liver microsomes (HLM) can predict the risk of IDT.

View Article and Find Full Text PDF

Novel tertiary diarylethylamines as functionally selective agonists of the kappa opioid receptor.

Bioorg Med Chem Lett

January 2025

Contineum Therapeutics, 3565 General Atomics Court, Suite 200, San Diego, CA 92121, United States.

Novel kappa opioid receptor (KOR) agonists that preferentially activate G-protein signaling versus β-arrestin-2 recruitment are described. Starting from a literature-reported phenol-containing diphenethylamine KOR agonist, structure-activity relationship (SAR) studies revealed replacement of the phenol with various non-hydroxylated bicyclic heteroaromatics led to tertiary diarylethylamines which retained KOR agonist activity and improved metabolic stability in human liver microsomes. Further optimizations produced compound 39, a potent activator of G-protein signaling (GTPγS EC = 14 nM, 83 % E) that did not elicit a β-arrestin-2 recruitment functional response (E < 10 %).

View Article and Find Full Text PDF

Introduction: Deglycosylated azithromycin (Deg-AZM), a new transgelin agonist with positive therapeutic effects on slow transit constipation, has been approved for clinical trials in 2024. This work investigated the drug metabolism and transport of Deg-AZM to provide research data for further development of Deg-AZM.

Methods: A combination of UPLC-QTOF-MS was used to obtain metabolite spectra of Deg-AZM in plasma, urine, feces and bile.

View Article and Find Full Text PDF

Cinnamon is one of the oldest known spices used in various food delicacies and herbal formulations. Cinnamaldehyde is a primary active constituent of cinnamon and substantially contributes to the food additive and medicinal properties of cinnamon. This report deals with cinnamaldehyde bioaccessibility, metabolic clearance, and interaction with human xenobiotic receptors (PXR and AhR).

View Article and Find Full Text PDF

Structure-based discovery of novel diarylpyrimidines as potent and selective Non-Nucleoside reverse transcriptase inhibitors: From CH(CN)-Biphenyl-Diarylpyrimidines to CNNH-Biphenyl-Diarylpyrimidines.

Eur J Med Chem

January 2025

Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China; Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China; Institute of Flow Chemistry and Engineering, School of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, China. Electronic address:

In order to enhance the anti-HIV-1 potency and selectivity of the previously reported compound 3 (EC = 27 nM, SI = 1361), a series of novel biphenyl-diarylpyrimidine derivatives were developed by employing structure-based drug design strategy. Among these derivatives, compound M44 demonstrated the most potent inhibitory activity against wild-type (WT) HIV-1 as well as five drug-resistant mutants (EC = 5-148 nM), which were 5-173 times more potent than that of 3 (EC = 27-9810 nM). Furthermore, this analogue exhibited approximately 11-fold lower cytotoxicity (CC = 54 μM) than that of etravirine and rilpivirine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!