Defects in intestinal epithelial tight junctions (TJs) allow paracellular permeation of noxious luminal antigens and are important pathogenic factors in inflammatory bowel disease (IBD). We show that alpha-tocopherylquinone (TQ), a quinone-structured oxidation product of vitamin E, consistently enhances the intestinal TJ barrier by increasing barrier-forming claudin-3 (CLDN3) and reducing channel-forming CLDN2 in Caco-2 cell monolayers (in vitro), mouse models (in vivo), and surgically resected human colons (ex vivo). TQ reduces colonic permeability and ameliorates colitis symptoms in multiple colitis models. TQ, bifunctionally, activates both aryl hydrocarbon receptor (AhR) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways. Genetic deletion studies reveal that TQ-induced AhR activation transcriptionally increases CLDN3 via xenobiotic response element (XRE) in the CLDN3 promoter. Conversely, TQ suppresses CLDN2 expression via Nrf2-mediated STAT3 inhibition. TQ offers a naturally occurring, non-toxic intervention for enhancement of the intestinal TJ barrier and adjunct therapeutics to treat intestinal inflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10528852PMC
http://dx.doi.org/10.1016/j.celrep.2023.112705DOI Listing

Publication Analysis

Top Keywords

intestinal epithelial
8
epithelial tight
8
nrf2 pathways
8
intestinal barrier
8
intestinal
5
alpha-tocopherylquinone differentially
4
differentially modulates
4
modulates claudins
4
claudins enhance
4
enhance intestinal
4

Similar Publications

Inflammatory bowel disease is a collection of intestinal disorders that cause inflammation in the digestive tract. Prolonged inflammation in the gastrointestinal tract is a major risk factor for colorectal cancer. The objective of this study was to fucus on gene expression levels of (KRT-14; associated with epithelial cell integrity) and enhancer of zeste homolog-1 (EZH-2; involved in cellular proliferation) in a IBD rat model in order to rule out impact of nutraceuticals (pumpkin seed oil; PSO) as a complementary approach to conventional treatments of IBD.

View Article and Find Full Text PDF

Bacteriophage M13KE as a Nanoparticle Platform to Display and Deliver a Pathogenic Epitope: Development of an Effective Porcine Epidemic Diarrhoea Virus Vaccine.

Microb Pathog

January 2025

Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201100, China. Electronic address:

Porcine epidemic diarrhoea virus (PEDV) is a porcine enteric coronavirus, outbreaks and epidemics of which have caused huge economic losses to the livestock industry. The disadvantage of existing PEDV vaccines is that the unstable efficacy and high cost limit their widespread use. Therefore, there is an urgent need to develop a recombinant transgenic vaccine candidate for PEDV.

View Article and Find Full Text PDF

Background: The intestinal mucosa of ulcerative colitis patients expresses high levels of interleukin 34, and mice lacking IL-34 have more severe DSS-induced experimental colitis. There are no studies on the effects of directly upregulating intestinal IL-34 on experimental colitis in mice.

Methods: The bacteria EcN/CSF-1 and EcN/IL-34, which express CSF-1 and IL-34, respectively, were genetically engineered from Escherichia coli Nissle 1917 (EcN).

View Article and Find Full Text PDF

Unbalanced redox homeostasis leads to the production of reactive oxygen species and exacerbates inflammatory bowel disease. To investigate the role of the transcription factor Nrf2, a major antioxidative stress sensor, in intestinal epithelial cells (IECs), we generated IEC-specific Nrf2 gene knock-in mice (Nrf2-vRes), which express Nrf2 only in IECs, using the cre/loxp system. Colitis was induced in wild-type (WT) mice, whole-body Nrf2-knockout (Nrf2-KO) mice, and Nrf2-vRes mice by administering dextran sulfate sodium (DSS) for 1 week (acute model) or intermittently for 5 weeks (chronic model).

View Article and Find Full Text PDF

Pioneering a New Frontier: Modeling the Epithelial-immune Cell Axis Using Human Intestinal Organoids.

Cell Mol Gastroenterol Hepatol

January 2025

Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina; Department of Cell Biology and Physiology, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Electronic address:

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!