Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: Successful mechanical circulatory support is influenced by various factors, which are difficult or impossible to control. For ideal functioning of the left ventricular assist device inflow-cannula, its axis should be close to parallel with the septum, facing the mitral valve within the left ventricle. Numerous international publications discuss that deviation from optimal implantation can lead to inadequate functioning and serious complications.
Objective: Our objective was to developing a method, which, using 3D technology, anatomical and hydrodynamic data, makes optimal surgical implantation of the left ventricular assist device possible.
Method: Data of 57 patients, receiving mechanical circulatory support at Semmelweis University, Heart and Vascular Center, were analyzed retrospectively. Results of operations performed with the patented novel navigation device (exoskeleton) were compared with results of operations performed conventionally, without navigation (control group). Following pairing based on estimated participation probability, postoperative data of 7-7 patients were compared. DICOM files from CT angiography images were used to create virtual geometries of individual hearts. Optimal inflow-cannula angle was determined through hydrodynamic simulation. Exoskeletons were printed using synthetic resin suitable for surgical purposes. Exoskeleton templates guided punch knife positioning and inflow-cannula implantation.
Results: Evaluation of postoperative CT angiography images showed that the angle between inflow-cannula and interventricular septum significantly differed in the exoskeleton and control groups (10.13° ± 2.69° vs. 22.87° ± 12.38°, p = 0.0208). Hydrodynamic tests found significantly lower turbulence in the exoskeleton group. Simulated turbulent kinetic energy was significantly lower in the exoskeleton group, which was 11.7 m2/s2 ± 9.39 m2/s2 vs. 49.59 m2/s2 ± 7.61 m2/s2 on average.
Conclusion: The results suggest left ventricular assist device implantation with patented exoskeleton to be a standardizable, safe and effective method. Preliminary results suggest, that the method may facilitate individualized care, reduce surgical time and incidence of serious complications. Orv Hetil. 2023; 164(26): 1026-1033.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1556/650.2023.32804 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!