In 2008, the role of clinical imaging in oncology drug development was reviewed. The review outlined where imaging was being applied and considered the diverse demands across the phases of drug development. A limited set of imaging techniques was being used, largely based on structural measures of disease evaluated using established response criteria such as response evaluation criteria in solid tumours. Beyond structure, functional tissue imaging such as dynamic contrast-enhanced MRI and metabolic measures using [F]flourodeoxyglucose positron emission tomography were being increasingly incorporated. Specific challenges related to the implementation of imaging were outlined including standardisation of scanning across study centres and consistency of analysis and reporting. More than a decade on the needs of modern drug development are reviewed, how imaging has evolved to support new drug development demands, the potential to translate state-of-the-art methods into routine tools and what is needed to enable the effective use of this broadening clinical trial toolset. In this review, we challenge the clinical and scientific imaging community to help refine existing clinical trial methods and innovate to deliver the next generation of techniques. Strong industry-academic partnerships and pre-competitive opportunities to co-ordinate efforts will ensure imaging technologies maintain a crucial role delivering innovative medicines to treat cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10546429 | PMC |
http://dx.doi.org/10.1259/bjr.20211126 | DOI Listing |
J Med Chem
January 2025
Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn institution, An der Immenburg 4, Bonn 53121, Germany.
Targeted protein degradation (TPD) represents a promising alternative to conventional occupancy-driven protein inhibition. Despite the existence of more than 600 E3 ligases in the human proteome, so far only a few have been utilized for TPD of histone deacetylases (HDACs), which represent important epigenetic anticancer drug targets. In this study, we disclose the first-in-class Fem-1 homologue B (FEM1B)-recruiting HDAC degraders.
View Article and Find Full Text PDFACS Infect Dis
January 2025
Pharmaceutical Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Vidya Vihar 333031, (RJ) India.
Antimicrobial drug resistance is a significant global health challenge, causing hundreds of thousands of deaths annually and severely impacting healthcare systems worldwide. Several reported antimicrobial compounds have a guanidine motif, as the positive charge on guanidine promotes cell lysis. Therefore, pyrrole- and indole-based allylidene hydrazine carboximidamide derivatives with guanidine motifs are proposed as antimicrobial agents that mimic cationic antimicrobial peptides (CAMPs).
View Article and Find Full Text PDFJAMA Netw Open
January 2025
Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland.
Importance: Women who use heroin in sub-Saharan Africa face elevated HIV risk linked to structural vulnerability including frequent incarceration. However, little is known about the association between incarceration and drug use and HIV outcomes among women who use heroin in Africa.
Objective: To estimate associations between incarceration and adverse HIV-related and drug use-related outcomes among women who used heroin.
J Med Chem
January 2025
State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
A novel 2'-α-fluoro-2'-β--(fluoromethyl) purine nucleoside phosphoramidate prodrug has been designed and synthesized to treat SARS-CoV-2 infection. The SARS-CoV-2 central replication transcription complex (C-RTC, nsp12-nsp7-nsp8) catalyzed in vitro RNA synthesis was effectively inhibited by the corresponding bioactive nucleoside triphosphate (). The cryo-electron microscopy structure of the C-RTC: complex was also determined.
View Article and Find Full Text PDFNeurology
January 2025
The Dubowitz Neuromuscular Centre, Developmental Neurosciences Department, University College London, Great Ormond Street Institute of Child Health, United Kingdom.
Background And Objectives: Safety and efficacy of IV onasemnogene abeparvovec has been demonstrated for patients with spinal muscular atrophy (SMA) weighing <8.5 kg. SMART was the first clinical trial to evaluate onasemnogene abeparvovec for participants weighing 8.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!