Objectives: The purpose of this study was to evaluate the diagnostic value of quantitative magnetic resonance neurography (MRN) in chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). We also compared various MRN parameters and determined the best performing one.
Methods: Through literature searches in PubMed, Embase, Cochrane, Ovid MEDLINE and ClinicalTtrials.gov until March 1, 2023, we selected studies with the diagnostic performance of MRN in CIDP patients. The pooled estimated sensitivity and specificity of quantitative MRN parameters were determined by a bivariate random-effects model. Subgroup analysis was performed to evaluate the proper quantitative parameters and nerve sites.
Results: A total of 14 quantitative MRN studies with 23 results gave a pooled sensitivity of 0.73 (95% CI 0.66-0.79) and a pooled specificity of 0.89 (95% CI 0.84-0.92). The area under the curve (AUC) was 0.89 (95%CI 0.86-0.92). Subgroup analysis of quantitative parameters showed the fractional anisotropy (FA) with the highest sensitivity of 0.85 (95% CI 0.77-0.90) and cross-sectional area (CSA) with the highest specificity of 0.95 (95% CI 0.85-0.99). The pooled correlation coefficient for interobserver agreements was 0.90 (95%CI 0.82-0.95).
Conclusion: Quantitative MRN has considerable diagnostic value in CIDP patients with accuracy and reliability. FA and CSA can be promising parameters in the future diagnosis of CIDP patients.
Advances In Knowledge: This is the first meta-analysis of quantitative MRN in the diagnosis of CIDP.We have selected reliable parameters with cut-off value and provided new insights for subsequent diagnosis of CIDP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10607413 | PMC |
http://dx.doi.org/10.1259/bjr.20221037 | DOI Listing |
Sci Rep
January 2025
Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
This study aimed to investigate the diagnostic and evaluative significance of combining median nerve (MN) morphological measurements with diffusion tensor imaging (DTI) and T2 mapping metrics for carpal tunnel syndrome (CTS). Morphological and multiparametric magnetic resonance neurography (MRN), along with clinical evaluation, were conducted on 33 CTS patients and 32 healthy controls. The MRN metrics included fractional anisotropy (FA), apparent diffusion coefficient (ADC), axial diffusivity (AD), radial diffusivity (RD), T2 value, cross-sectional area (CSA) and MN flattening ratio (MNFR) at both the pisiform bone and hamate bone levels.
View Article and Find Full Text PDFJ Virol
December 2024
Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA.
Sci Rep
September 2024
Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China.
Contrast-enhanced magnetic resonance neurography (CE-MRN) holds promise for diagnosing brachial plexopathy by enhancing nerve visualization and revealing additional imaging features in various lesions. This study aims to validate CE-MRN's efficacy in improving brachial plexus (BP) imaging across different patient cohorts. Seventy-one subjects, including 19 volunteers and 52 patients with BP compression/entrapment, injury, and neoplasms, underwent both CE-MRN and plain MRN.
View Article and Find Full Text PDFJ Magn Reson Imaging
September 2024
Institute of Diagnostic and Interventional Radiology, University Hospital Zurich (USZ), Zurich, Switzerland.
Background: Intravenous Ferumoxtran-10 belongs to ultra-small superparamagnetic iron oxide particles and can be used for magnetic resonance neurography (MRN) as an alternative to other imaging methods which use contrast agents.
Purpose: To examine the impact of intravenous Ferumoxtran-10 on vascular suppression and compare image quality to gadolinium (Gd)-enhanced image acquisition in MRN of lumbosacral plexus (LS).
Study Type: Prospective.
Eur Radiol Exp
August 2024
Institute of Neuroradiology, University Hospital of Heidelberg, Heidelberg, Germany.
Background: Magnetic resonance neurography (MRN) is increasingly used as a diagnostic tool for peripheral neuropathies. Quantitative measures enhance MRN interpretation but require nerve segmentation which is time-consuming and error-prone and has not become clinical routine. In this study, we applied neural networks for the automated segmentation of peripheral nerves.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!