In the body, nerve tissue is not only present in the central nervous system, but also in the periphery. The enteric nervous system (ENS) is a highly organized intrinsic network of neurons and glial cells grouped to form interconnected ganglia. Glial cells in the ENS are a fascinating cell population: their neurotrophic role is well established, as well as their plasticity in specific circumstances. Gene expression profiling studies indicate that ENS glia retain neurogenic potential. The identification of neurogenic glial subtype(s) and the molecular basis of glia-derived neurogenesis may have profound biological and clinical implications. In this review, we discuss the potential of using gene-editing for ENS glia and cell transplantation as therapies for enteric neuropathies. Glia in the ENS: target or tool for nerve tissue repair?
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neulet.2023.137360 | DOI Listing |
Foot Ankle Int
January 2025
Department of Orthopaedic Surgery, Chungbuk National University Hospital, Cheongju, Republic of Korea.
Background: Autologous osteochondral transplantation (AOT) is an option to treat large osteochondral lesions of the talus (OLTs), accompanying subchondral cyst, and previous unsuccessful bone marrow stimulation (BMS) procedures. Although there is extensive literature on the outcomes of surgical interventions for medial osteochondral lesions, research focusing on lateral lesions remains limited. This article presents the intermediate-term clinical and radiologic outcomes following AOT for lateral OLTs.
View Article and Find Full Text PDFBiol Trace Elem Res
January 2025
Department of Hematology, Affiliated Hospital of Guizhou Medical University, No. 4 Bei Jing Road, Yunyan District, Guiyang, 550004, Guizhou Province, China.
Chronic fluorosis is often accompanied by neurological symptoms, leading to attention, memory and learning ability decline and causing tension, anxiety, depression, and other mental symptoms. In the present study, we analyzed the molecular mechanisms of SIRT1-BDNF regulation of PI3K-AKT, MAPK, and FOXO1A in F-treated BV2 cells. The cytotoxic effect of sodium fluoride (NaF) on BV2 cells was assessed using Cell Counting Kit-8 (CCK-8), crystal violet, and 5-ethynyl-2'-deoxyuridine (EdU) staining.
View Article and Find Full Text PDFSci Rep
January 2025
Privatpraxis Prof Jonas und Dr Panda-Jonas, Heidelberg, Germany.
Bruch´s membrane (BM) is firmly connected posteriorly to the optic nerve head through the peripapillary choroidal border tissue, and anteriorly through the longitudinal ciliary muscle to the scleral spur. We assessed, whether a difference in the contractile state of the ciliary muscle influences the position of the posterior BM by lifting the posterior BM pole, i.e.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Histological chorioamnionitis (HCA) is a form of maternal immune activation (MIA) linked to an increased risk of neurodevelopmental disorders in offspring. Our previous study identified neurodevelopmental impairments in an MIA mouse model mimicking HCA. Thus, this study investigated the role of CD11c microglia, key contributors to myelination through IGF-1 production, in this pathology.
View Article and Find Full Text PDFTransl Psychiatry
January 2025
Research Center Juelich, Institute of Neuroscience and Medicine 10, Research Center Juelich, Juelich, Germany.
Genetic variation in the α5 nicotinic acetylcholine receptor (nAChR) subunit of mice results in behavioral deficits linked to the prefrontal cortex (PFC). rs16969968 is the primary Single Nucleotide Polymorphism (SNP) in CHRNA5 strongly associated with nicotine dependence and schizophrenia in humans. We performed single cell-electrophysiology combined with morphological reconstructions on layer 6 (L6) excitatory neurons in the medial PFC (mPFC) of wild type (WT) rats, rats carrying the human coding polymorphism rs16969968 in Chrna5 and α5 knockout (KO) rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!