The development of an accurate and sensitive sensor for detecting amyloid plaques, which are responsible for many protein disorders like Alzheimer's disease, is crucial for early diagnosis. Recently, there has been a notable increase in the development of fluorescence probes that exhibit emission in the red region (>600 nm), aiming to effectively tackle the challenges encountered when working with complex biological matrices. In the current investigation, a hemicyanine-based probe, called LDS730, has been used for the sensing of amyloid fibrils, which belong to the Near-Infrared Fluorescence (NIRF) family of dyes. NIRF probes provide higher precision in detection, prevent photo-damage, and minimize the autofluorescence of biological specimens. The LDS730 sensor emits in the near-infrared region and shows a 110-fold increase in fluorescence turn-on emission when bound to insulin fibrils, making it a highly sensitive sensor. The sensor has an emission maximum of ~710 nm in a fibril-bound state, which shows a significant red shift along with a Stokes' shift of ~50 nm. The LDS730 sensor also displays excellent performance in the complicated human serum matrix, with a limit of detection (LOD) of 103 nM. Molecular docking calculations suggest that the most likely binding location of LDS730 in the fibrillar structure is the inner channels of amyloid fibrils along its long axis, and the sensor engages in several types of hydrophobic interactions with neighboring amino acid residues of the fibrillar structure. Overall, this new amyloid sensor has great potential for the early detection of amyloid plaques and for improving diagnostic accuracy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.125621 | DOI Listing |
J Ovarian Res
January 2025
Department of Medical Genetics, National Taiwan University Hospital, 19F, No. 8, Chung-Shan South Road, Taipei City, Taiwan.
Background: The homologous recombination deficiency (HRD) test is an important tool for identifying patients with epithelial ovarian cancer (EOC) benefit from the treatment with poly(adenosine diphosphate-ribose) polymerase inhibitor (PARPi). Using whole exome sequencing (WES)-based platform can provide information of gene mutations and HRD score; however, the clinical value of WES-based HRD test was less validated in EOC.
Methods: We enrolled 40 patients with EOC in the training cohort and 23 in the validation cohort.
BMC Vet Res
January 2025
Technology Center, Hohhot Customs District, Hohhot, 010020, Inner Mongolia, China.
Background: Bovine viral diarrhoea virus genotype 1 (BVDV-1) and bluetongue virus (BTV) are potent viral pathogens that may be transmitted through semen, resulting in the spread of diseases via artificial insemination. Thus, establishing an early detection method for BVDV-1 and BTV infection is important for the trading of semen. In this study, we developed two RT‒ddPCR methods to detect BVDV-1 and BTV, and each method was evaluated for repeatability, limit of detection and specificity.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Traditional Chinese Medicine, People's Hospital of Guangxi Zhuang Autonomous Region, 6 Taoyuan Road, Qingxiu District, Nanning City, Guangxi Zhuang Autonomous Region, People's Republic of China.
Stomach adenocarcinoma (STAD) is a common malignancy with high heterogeneity and a lack of highly precise treatment options. We downloaded the multiomics data of STAD patients in The Cancer Genome Atlas (TCGA)-STAD cohort, which included mRNA, microRNA, long non-coding RNA, somatic mutation, and DNA methylation data, from the sxdyc website. We synthesized the multiomics data of patients with STAD using 10 clustering methods, construct a consensus machine learning-driven signature (CMLS)-related prognostic models by combining 10 machine learning methods, and evaluated the prognosis models using the C-index.
View Article and Find Full Text PDFNat Commun
January 2025
School of Emergent Soft Matter, South China University of Technology, Guangzhou, China.
Radioactive molecular iodine (I) is a critical volatile pollutant generated in nuclear energy applications, necessitating sensors that rapidly and selectively detect low concentrations of I vapor to protect human health and the environment. In this study, we design and prepare a three-component sensing material comprising reduced graphene oxide (rGO) as the substrate, silver iodide (AgI) particles as active sites, and polystyrene sulfonate as an additive. The AgI particles enable reversible adsorption and conversion of I molecules into polyiodides, inducing substantial charge density variation in rGO.
View Article and Find Full Text PDFCell Death Discov
January 2025
Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
Lung cancer is the leading cause of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC) is highly resistant to chemo- or radiation therapy, which poses a huge challenge for treatment of advanced NSCLC. Previously, we demonstrated the oncogenic role of Tudor Staphylococcal nuclease (TSN, also known as Staphylococcal nuclease domain-containing protein 1, SND1), in regulating chemoresistance in NSCLC cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!