The potential role of GSK-3β signaling pathway for amelioration actions of ketamine on the PTSD rodent model.

Brain Res Bull

School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, PR China; Management Committee of Shanting Economic Development Zone, No.37, Fuqian Road, Zaozhuang, Shandong, 277200, China; Department of Neurosurgery, Shanting District People's Hospital, Beijing Road, New Town, Zaozhuang, Shandong, 277200, China. Electronic address:

Published: August 2023

Rationale: Post-traumatic stress disorder (PTSD) is a complex, chronic psychiatric disorder typically triggered by life-threatening events and, as yet, lacks a specialized pharmacological treatment. The potential therapeutic role of ketamine, an N-methyl-D-aspartate receptor antagonist, in mitigating PTSD has been the subject of investigation.

Objective: The aim of this study was to elucidate alterations in the glycogen synthase kinase-3β (GSK-3β) signaling pathway in response to ketamine intervention, using the single prolonged stress (SPS) model of PTSD at a molecular level.

Methods: PTSD-like symptoms were simulated using the SPS model. Ketamine (10 mg/kg) and GSK-3β antagonist SB216763 (5 mg/kg) were then administered intraperitoneally. Stress-related behavior was evaluated through the open field test (OFT) and the elevated plus maze test (EMPT). Additionally, brain activity was analyzed using quantitative electroencephalography (qEEG). Changes in protein and mRNA expressions of glucocorticoid receptor (GR), brain-derived neurotrophic factor (BDNF), GSK-3β, phosphorylated ser-9 GSK-3β (p-GSK-3β), FK506 binding protein 5 (FKBP5), and corticotropin-releasing hormone (CRH) were assessed in the hypothalamus via western blot and qPCR.

Results: SPS-exposed rats exhibited reduced distance and time spent in the center of the open arms, a pattern divergent from control rats. qEEG readings revealed SPS-induced increases in alpha power, low gamma and high gamma power. Furthermore, SPS triggered an upregulation in the protein and gene expression of GSK-3β, GR, BDNF, p-GSK-3β, and FKBP5, and downregulated CRH expression in the hypothalamus. Ketamine administration following the SPS procedure counteracted these changes by increasing the time spent in the center of the OFT, the distance traversed in the open arms of the EMPT, and mitigating SPS-induced alterations in cerebral cortex oscillations. Moreover, ketamine reduced the protein levels of GSK-3β, GR, p-GSK-3β, and altered the ratio of p-GSK-3β to GSK-3β. Gene expression of GSK-3β, GR, BDNF, and FKBP5 decreased in the SPS-Ket group compared to the SPS-Sal group.

Conclusions: Ketamine appeared to remediate the abnormal GSK-3β signaling pathway induced by SPS. These findings collectively suggest that ketamine could be a promising therapeutic agent for PTSD symptoms, working through the modulation of the GSK-3β signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainresbull.2023.110697DOI Listing

Publication Analysis

Top Keywords

gsk-3β signaling
16
signaling pathway
16
gsk-3β
11
ketamine
8
sps model
8
gsk-3β p-gsk-3β
8
time spent
8
spent center
8
open arms
8
gene expression
8

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Aptah Bio Inc., San Carlos, CA, USA.

Background: Alzheimer's disease (AD) is the most common cause of dementia worldwide. It is characterized by dysfunction in the U1 small nuclear ribonucleoproteins (snRNPs) complex, which may precede TAU aggregation, enhancing premature polyadenylation, spliceosome dysfunction, and causing cell cycle reentry and death. Thus, we evaluated the effects of a synthetic single-stranded cDNA, called APT20TTMG, in induced pluripotent stem cells (iPSC) derived neurons from healthy and AD donors and in the Senescence Accelerated Mouse-Prone 8 (SAMP8) model.

View Article and Find Full Text PDF

Background: Genetic studies indicate a causal role for microglia, the innate immune cells of the central nervous system (CNS), in Alzheimer's disease (AD). Despite the progress made in identifying genetic risk factors, such as CD33, and underlying molecular changes, there are currently limited treatment options for AD. Based on the immune-inhibitory function of CD33, we hypothesize that inhibition of CD33 activation may reverse microglial suppression and restore their ability to resolve inflammatory processes and mitigate pathogenic amyloid plaques, which may be neuroprotective.

View Article and Find Full Text PDF

Background: Dysregulated GABA/somatostatin (SST) signaling has been implicated in psychiatric and neurodegenerative disorders. The inhibition of excitatory neurons by SST+ interneurons, particularly through α5-containing GABAA receptors (α5-GABAAR), plays a crucial role in mitigating cognitive functions. Previous research demonstrated that an α5-positive allosteric modulator (α5-PAM) mitigates working memory deficits and reverses neuronal atrophy in aged mice.

View Article and Find Full Text PDF

Background: Alzheimer's disease neuropathology involves the deposition in brain of aggregates enriched with microtubule-binding-region (MTBR) of tau adopting an abnormal conformation between residues 306-378 in the core of aggregates. Anti-tau drugs targeting around this domain have the potential to interfere with the cell-to-cell propagation of pathological tau. Bepranemab is a humanized monoclonal Ig4 antibody binding to tau residues 235-250.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is the most prevalent cause of dementia accounting for an estimated 60% to 80% of cases. Despite advances in the research field, developing truly effective therapies for AD symptoms remains a major challenge. Sweet almond contain nutrients that have the potential of combating age-related brain dysfunction, by improving learning, memory and neurocognitive performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!