A combined strategy to mitigate the accumulation of arsenic and cadmium in rice (Oryza sativa L.).

Sci Total Environ

Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China. Electronic address:

Published: October 2023

Arsenic and cadmium in rice grain are of growing concern in the global food supply chain. Paradoxically, the two elements have contrasting behaviors in soils, making it difficult to develop a strategy that can concurrently reduce their uptake and accumulation by rice plant. This study examined the combined impacts of watering (irrigation) schemes, different fertilizers and microbial populations on the bioaccumulation of arsenic and cadmium by rice as well as on rice grain yield. Compared to drain-flood and flood-drain treatments, continuously flooded condition significantly reduced the accumulation of cadmium in rice plant but the level of arsenic in rice grain remained above 0.2 mg/kg, which exceeded the China national food safety standard. Application of different fertilizers under continuously flooded condition showed that compared to inorganic fertilizer and biochar, manure addition effectively reduced the accumulation of arsenic over three to four times in rice grain and both elements were below the food safety standard (0.2 mg/kg) while significantly increasing the rice yield. Soil Eh was the critical factor in the bioavailability of cadmium, while the behavior of arsenic in rhizosphere was associated with the iron cycle. The results of the multi-parametric experiments can be used as a roadmap for low-cost and in-situ approach for producing safe rice without compromising the yield.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.165226DOI Listing

Publication Analysis

Top Keywords

cadmium rice
16
rice grain
16
arsenic cadmium
12
rice
10
accumulation arsenic
8
rice plant
8
continuously flooded
8
flooded condition
8
reduced accumulation
8
food safety
8

Similar Publications

Ionomic and metabolomic analyses reveal association between nutritional value and aleurone layer thickness in rice.

Food Chem

January 2025

Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Zhongshan Biological Breeding Laboratory / Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, China. Electronic address:

The fortification of aleurone cells represents a promising avenue for enhancing the nutritional quality of cereal. This study investigated dorsal aleurone thickness (DAT) in a rice diversity panel comprising 180 varieties, revealing that DAT of the Geng subspecies is typically greater than that of the Xian subspecies. The minerals and primary metabolites accumulated in the brown grains of ten rice varieties exhibiting distinct DAT were subjected to analysis using spectrometry-based technologies.

View Article and Find Full Text PDF

Prevalence of chronic kidney disease and anemia in Hirakud Command Area, Odisha, India: unveiling the role of environmental toxicants.

J Nephrol

January 2025

Laboratory of Renal Toxicopathology & Medicine, P.G. Department of Environmental Sciences, Sambalpur University, Burla, Odisha, 768019, India.

Background: The present community-based study assessed the prevalence of chronic kidney disease (CKD)/chronic kidney disease of unknown origin (CKDu) as well as anemia in some intense agricultural zones under Hirakud Command Area and evaluated their association with pesticides and heavy metal exposure.

Methods: Random cluster sampling method was used to assess the prevalence of CKD and anemia. Hematological analysis was carried out using autoanalyzer.

View Article and Find Full Text PDF

Cadmium translocation combined with metabolomics analysis revealed potential mechanisms of MT@MSN-CS and GSH@MSN-CS in reducing cadmium accumulation in rice (Oryza sativa L.) grains.

Environ Sci Pollut Res Int

January 2025

Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Department of Environmental Engineering, Zhejiang University, Zhejiang Province, Hangzhou, 310058, P.R. China.

Applying nano-delivery systems for phytohormones via foliar application has proven effective in reducing grain cadmium (Cd) levels in crops. However, the mechanisms underlying this reduction remain inadequately understood. This study integrated the determination of leaf photosynthetic parameters, Cd translocation analysis, and metabolomics to elucidate the effects of reduced glutathione (GSH) and melatonin (MT), delivered with or without chitosan-encapsulated mesoporous silica nanoparticles (MSN-CS), on grain Cd levels in rice.

View Article and Find Full Text PDF

Impact of short-term soil disturbance on cadmium remobilization and associated risk in vulnerable regions.

Ecotoxicol Environ Saf

January 2025

Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China. Electronic address:

A comprehensive understanding of cadmium (Cd) migration in soils near contaminated hotspots is crucial for optimizing remediation efforts and ensuring crop health. This study investigates agricultural soils from four sites in mining and sewage-irrigation areas, assessing the impact of inorganic and organic fertilizer application on soil Cd remobilization. Results revealed that fertilization, particularly with mineral phosphorus, disrupts soil stability, substantially increases short-term Cd mobility in vulnerable regions.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined how adding nitrogen fertilizers affects the remobilization of cadmium in rice fields, highlighting increased cadmium levels in rice due to ammonia nitrogen (NH-N) compared to nitrogen (NO-N).
  • Organic acids secreted by rice roots, particularly under NH-N treatment, were found to play a significant role in increasing soluble cadmium content and impacting microbial community functions.
  • The research suggests a complex interaction between nutrient application, cadmium levels, and microbial dynamics that could elevate cadmium exposure through rice consumption.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!