Inter-areal coherence has been hypothesized as a mechanism for inter-areal communication. Indeed, empirical studies have observed an increase in inter-areal coherence with attention. Yet, the mechanisms underlying changes in coherence remain largely unknown. Both attention and stimulus salience are associated with shifts in the peak frequency of gamma oscillations in V1, which suggests that the frequency of oscillations may play a role in facilitating changes in inter-areal communication and coherence. In this study, we used computational modeling to investigate how the peak frequency of a sender influences inter-areal coherence. We show that changes in the magnitude of coherence are largely determined by the peak frequency of the sender. However, the pattern of coherence depends on the intrinsic properties of the receiver, specifically whether the receiver integrates or resonates with its synaptic inputs. Because resonant receivers are frequency-selective, resonance has been proposed as a mechanism for selective communication. However, the pattern of coherence changes produced by a resonant receiver is inconsistent with empirical studies. By contrast, an integrator receiver does produce the pattern of coherence with frequency shifts in the sender observed in empirical studies. These results indicate that coherence can be a misleading measure of inter-areal interactions. This led us to develop a new measure of inter-areal interactions, which we refer to as Explained Power. We show that Explained Power maps directly to the signal transmitted by the sender filtered by the receiver, and thus provides a method to quantify the true signals transmitted between the sender and receiver. Together, these findings provide a model of changes in inter-areal coherence and Granger-causality as a result of frequency shifts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7616852 | PMC |
http://dx.doi.org/10.1016/j.neuroimage.2023.120256 | DOI Listing |
Cereb Cortex
October 2024
Institute for Advanced Simulation (IAS-6), Jülich Research Centre, D-52428 Jülich, Germany.
Although the structure of cortical networks provides the necessary substrate for their neuronal activity, the structure alone does not suffice to understand the activity. Leveraging the increasing availability of human data, we developed a multi-scale, spiking network model of human cortex to investigate the relationship between structure and dynamics. In this model, each area in one hemisphere of the Desikan-Killiany parcellation is represented by a $1\,\mathrm{mm^{2}}$ column with a layered structure.
View Article and Find Full Text PDFNeuron
July 2024
Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany; Donders Centre for Neuroscience, Department of Neuroinformatics, Radboud University Nijmegen, 6525 Nijmegen, the Netherlands. Electronic address:
Selective attention is thought to depend on enhanced firing activity in extrastriate areas. Theories suggest that this enhancement depends on selective inter-areal communication via gamma (30-80 Hz) phase-locking. To test this, we simultaneously recorded from different cell types and cortical layers of macaque V1 and V4.
View Article and Find Full Text PDFEur J Neurosci
March 2024
Department of Molecular Medicine, University of Oslo, Oslo, Norway.
It has been suggested that consciousness is closely related to the complexity of the brain. The perturbational complexity index (PCI) has been used in humans and rodents to distinguish conscious from unconscious states based on the global cortical responses (recorded by electroencephalography, EEG) to local cortical stimulation (CS). However, it is unclear how different cortical layers respond to CS and contribute to the resulting intra- and inter-areal cortical connectivity and PCI.
View Article and Find Full Text PDFJ Neurophysiol
September 2023
Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, United States.
Electrical activity at high gamma frequencies (70-170 Hz) is thought to reflect the activity of small cortical ensembles. For example, high gamma activity (often quantified by spectral power) can increase in sensory-motor cortex in response to sensory stimuli or movement. On the other hand, synchrony of neural activity between cortical areas (often quantified by coherence) has been hypothesized as an important mechanism for inter-areal communication, thereby serving functional roles in cognition and behavior.
View Article and Find Full Text PDFTrends Cogn Sci
October 2023
Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa 240-0193, Japan. Electronic address:
Vicarious reward plays a pivotal role in shaping altruism and prosociality. However, neural circuit mechanisms underlying the distinction between vicarious reward and experienced reward are poorly understood. Putnam et al.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!