We report a novel production process for lactobionic acid (LBA) production using an engineered Neurospora crassa strain F5. The wild-type N. crassa strain produces cellobiose dehydrogenase (CDH) and uses lactose as a carbon source. N. crassa strain F5, which was constructed by deleting six out of the seven β-glucosidases in the wild type, showed a much slower lactose utilization rate and produced a much higher level of cellobiose dehydrogenase (CDH) than the wild type. Strain N. crassa F5 produced CDH and laccase simultaneously on the pretreated wheat straw with 3 µM of cycloheximide added as the laccase inducer. The deproteinized cheese whey was added directly to the shake flasks with the fungus present to achieve LBA production. Strain F5 produced about 37 g/L of LBA from 45 g/L of lactose in 27 h since deproteinized cheese whey addition. The yield of LBA from consumed lactose was about 85%, and the LBA productivity achieved was about 1.37 g/L/h.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-023-04583-x | DOI Listing |
Curr Res Food Sci
December 2024
Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, Singapore, 117543, Singapore.
A key factor influencing consumer acceptance of soybean products is the aroma and taste profile, which can be modulated through fermentation using unique microbial strains. This study aimed to identify and characterize novel microbial strains with the potential to enhance flavour profiles including umami, while reducing undesirable flavour notes such as beany aromas. The results showed an 800% (8-fold) increase in free amino acids in samples fermented with , which correlated with an increase in umami intensity as measured using an E-tongue.
View Article and Find Full Text PDFBMC Genomics
December 2024
Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA.
Background: Organization of the eukaryotic genome is essential for proper function, including gene expression. In metazoans, chromatin loops and Topologically Associated Domains (TADs) organize genes into transcription factories, while chromosomes occupy nuclear territories in which silent heterochromatin is compartmentalized at the nuclear periphery and active euchromatin localizes to the nucleus center. A similar hierarchical organization occurs in the fungus Neurospora crassa where its seven chromosomes form a Rabl conformation typified by heterochromatic centromeres and telomeres independently clustering at the nuclear membrane, while interspersed heterochromatic loci aggregate across Megabases of linear genomic distance to loop chromatin in TAD-like structures.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
Antifungal resistance, particularly the rise of multidrug-resistance strains, poses a significant public health threat. In this study, the study identifies a novel multidrug-resistance gene, msp-8, encoding a helicase, through experimental evolution with Neurospora crassa as a model. Deletion of msp-8 conferred multidrug resistance in N.
View Article and Find Full Text PDFGenetics
November 2024
Graduate School of Science & Engineering, Saitama University, Shimo-Ohkubo 255, Sakura-ku, Saitama, Saitama 338-8570, Japan.
Hyphal elongation is the vegetative growth of filamentous fungi, and many species continuously elongate their hyphal tips over long periods. The details of the mechanisms for maintaining continuous growth are not yet clear. A novel short lifespan mutant of N.
View Article and Find Full Text PDFmBio
January 2025
The Plant and Microbial Biology Department, The University of California, Berkeley, California, USA.
Filamentous fungi are important producers of enzymes and secondary metabolites. The industrial thermophilic species, is closely related to the model fungus, . A critical aspect of the filamentous fungal life cycle is the production of asexual spores (conidia), which are regulated by various stimuli, including nutrient availability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!