The CEBPA-FGF21 regulatory network may participate in the T2DM-induced skeletal muscle atrophy by regulating the autophagy-lysosomal pathway.

Acta Diabetol

Department of Physical Medicine and Rehabilitation, Xiangya Hospital of Central South University, No. 87, Xiang-Ya Road, Changsha, 410008, Hunan Province, China.

Published: November 2023

Aims: Recent years have witnessed an increasing research interest in the roles of transcription factor (TF)-gene regulatory network in type 2 diabetes mellitus (T2DM). Thus, we sought to characterize the mechanistic insights based on the TF-gene regulatory network in skeletal muscle atrophy in T2DM.

Methods: Differentially expressed TFs (DETFs) and mRNAs (DEmRNAs) were obtained in T2DM-related gene expression profiles (GSE12643, GSE55650, GSE166502, and GSE29221), followed by WGCNA, and GO and KEGG enrichment analyses. Next, the iRegulon plug-in unit of Cytoscape software was used to construct a TF-mRNA regulatory network. Besides, RT-qPCR and ChIP-seq were utilized to measure the expression of CEBPA and FGF21 in the skeletal muscle tissues or cells of T2DM rat models. At last, the effect of overexpression of FGF21 on the autophagy-lysosomal pathway was examined in skeletal muscle cells of T2DM rats.

Results: Totally, 12 DETFs and 102 DEmRNAs were found in the skeletal muscle tissues of T2DM samples. The DEmRNAs were mainly enriched in the autophagy-lysosomal pathway. CEBPA affected the skeletal muscle atrophy in T2DM by regulating 5 target genes via the autophagy-lysosomal pathway. CEBPA could target FGF21. In addition, the expression of CEBPA was elevated, while the expression of FGF21 was diminished in the skeletal muscle tissues or cells of T2DM rats. The CEBPA-FGF21 regulatory network promoted skeletal muscle atrophy in T2DM by activating the autophagy-lysosomal pathway.

Conclusion: The CEBPA-FGF21 regulatory network may participate in the T2DM-induced skeletal muscle atrophy by regulating the autophagy-lysosomal pathway. Thus, our study provides interesting targets for prevention of skeletal muscle atrophy in T2DM.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00592-023-02131-xDOI Listing

Publication Analysis

Top Keywords

skeletal muscle
40
regulatory network
24
muscle atrophy
24
autophagy-lysosomal pathway
20
cebpa-fgf21 regulatory
12
muscle tissues
12
cells t2dm
12
atrophy t2dm
12
skeletal
10
muscle
10

Similar Publications

Dynamics of tissue repair regulatory T cells and damage in acute Trypanosoma cruzi infection.

PLoS Pathog

January 2025

Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET). Córdoba, Argentina.

Tissue-repair regulatory T cells (trTregs) comprise a specialized cell subset essential for tissue homeostasis and repair. While well-studied in sterile injury models, their role in infection-induced tissue damage and antimicrobial immunity is less understood. We investigated trTreg dynamics during acute Trypanosoma cruzi infection, marked by extensive tissue damage and strong CD8+ immunity.

View Article and Find Full Text PDF

Image-guided Interventions for Core Muscle Injury and Other Disorders in the Pubic Symphysis.

Radiographics

February 2025

Department of Medical Imaging, The Ottawa Hospital, 501 Smyth Rd, Ottawa, ON, Canada K1H 8L6 (D.V.F., J.L.); Department of Radiology, Radiation Oncology and Medical Physics, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada (D.V.F., J.L.); Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (D.V.F., J.L.); and Department of Radiology, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada (T.M.).

Formerly termed or , core muscle injury (CMI) encompasses abnormality of structures within the so-called core, which is essentially the hip, abdomen, and pubis. Compared with data on image-guided procedures of other joints, information regarding procedures performed to address CMI and other disorders of the pubic symphysis is lacking. These procedures can be daunting given the joint's small size, surrounding critical neurovascular structures, and three-dimensional anatomy.

View Article and Find Full Text PDF

Aerobic exercise prevents renal osteodystrophy via irisin-activated osteoblasts.

JCI Insight

January 2025

Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.

Renal osteodystrophy is commonly seen in patients with chronic kidney disease (CKD) due to disrupted mineral homeostasis. Given the impaired renal function in these patients, common anti-resorptive agents, including bisphosphonates, must be used with caution or even contraindicated. Therefore, an alternative therapy without renal burden to combat renal osteodystrophy is urgently needed.

View Article and Find Full Text PDF

Interplay between Skeletal Muscle Catabolism and Remodeling of Arteriovenous Fistula via YAP1 Signaling.

J Am Soc Nephrol

January 2025

Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030.

Background: Arteriovenous (AV) fistulas are the preferred access for dialysis but have a high incidence of failure. This study aims to understand the crosstalk between skeletal muscle catabolism and AV fistula maturation failure.

Methods: Skeletal muscle metabolism and AV fistula maturation were evaluated in mice with chronic kidney disease (CKD).

View Article and Find Full Text PDF

Background: Nasal high flow (NHF) has been proposed to sustain high intensity exercise in people with COPD, but we have a poor understanding of its physiological effects in this clinical setting.

Research Question: What is the effect of NHF during exercise on dynamic respiratory muscle function and activation, cardiorespiratory parameters, endurance capacity, dyspnoea and leg fatigue as compared to control intervention.

Study Design And Methods: Randomized single-blind crossover trial including COPD patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!