As an expansion upon Baldwin rules, the cyclization reactions of hex-5-yn-1-yl radical systems with different first-, second-, and third-row linkers are explored at the CCSD(T) level via means of the SMD(benzene)-G4(MP2) thermochemical protocol. Unlike C, O, and N linkers, systems with B, Si, P, S, Ge, As, and Se linkers are shown to favor 6-endo-dig cyclization. This offers fundamental insights into the rational synthetic design of cyclic compounds. A thorough analysis of stereoelectronic effects, cyclization barriers, and intrinsic barriers illustrates that structural changes alter the cyclization preference by mainly impacting 5-exo-dig reaction barriers. Based on the high-level computational modeling, we proceed to develop a new tool for cyclization preference prediction from the correlation between cyclization barriers and radical structural parameters (e. g., linker bond length and bond angle). A strong correlation is found between the radical attack trajectory angle and the reaction barrier heights, i. e., cyclization preference. Finally, the influence of stereoelectronic effects on the two radical cyclization pathways is further investigated in stereoisomers of hypervalent silicon system, which provides novel insight into cyclization control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.202300426 | DOI Listing |
Biochemistry
January 2025
Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, Hannover 30167, Germany.
Farnesyl pyrophosphate derivatives bearing an additional oxygen atom at position 5 proved to be very suitable for expanding the substrate promiscuity of sesquiterpene synthases (STSs) and the formation of new oxygenated terpenoids. Insertion of an oxygen atom in position 9, however, caused larger restraints that led to restricted acceptance by STSs. In order to reduce some of the proposed restrictions, two FPP-ether derivatives with altered substitution pattern around the terminal olefinic double bond were designed.
View Article and Find Full Text PDFJ Chem Inf Model
December 2024
Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
Macrocyclization is a critical strategy in rational drug design that can offer several advantages, such as enhancing binding affinity, increasing selectivity, and improving cellular permeability. Herein, we introduce MacGen, a web tool devised for structure-based macrocycle design. MacGen identifies exit vector pairs within a ligand that are suitable for cyclization and finds 3D linkers that can align with the geometric arrangement of these pairs to form macrocycles.
View Article and Find Full Text PDFChem Pharm Bull (Tokyo)
December 2024
Department of Pharmacy, Musashino University.
This study introduces a novel method for ring-closing chlorosulfenylation of alkenoic thioesters using N-chlorosuccinimide in hexafluoroisopropanol under mild conditions. This reaction efficiently forms five-membered cyclic sulfur compounds with high selectivity, representing a significant advancement in the synthesis of chlorinated S-heterocycles. Computational analysis using density functional theory demonstrates the superiority of thioester nucleophiles over traditional benzyl sulfides in this reaction, highlighting the energetic preference for thioesters.
View Article and Find Full Text PDFOrg Lett
December 2024
Departamento de Química Orgánica e Inorgánica e Instituto Universitario de Química Organometálica "Enrique Moles", Unidad Asociada al C.S.I.C., Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain.
Herein, we report a gold-catalyzed propargylation of chromone derivatives by propargylsilanes. Chromones are synergistically activated by the silylium cation resulting from the gold activation of the propargylsilane. The reaction exclusively occurs at the C2-position of the chromone, and a single diastereoisomer is formed.
View Article and Find Full Text PDFBiomolecules
October 2024
Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, HR-10 000 Zagreb, Croatia.
In previous research, 1,2,3-triazolium salts showed significant biological activity as potential inhibitors of cholinesterase enzymes (ChEs), which are crucial for neurotransmission. In this research, pairs of uncharged thienobenzo-triazoles and their charged salts were prepared in order to further examine the role of the positive charge on the nitrogen of the triazole ring in interactions within the active site of the enzymes, and to compare the selectivity of 1,2,3-triazolium salts in relation to their uncharged analogs obtained by photochemical cyclization. Neutral thienobenzo-triazoles showed very good selective activity toward butyrylcholinesterase (BChE), while their salts showed excellent non-selective inhibition toward both BChE (the most active : IC 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!