Optical changes and association with axial elongation in children wearing orthokeratology lenses of different back optic zone diameter.

Eye Vis (Lond)

Contact Lens and Visual Optics Laboratory, School of Optometry and Vision Science, Centre for Vision and Eye Research, Queensland University of Technology, Brisbane, QLD, Australia.

Published: July 2023

Purpose: To compare changes in ocular aberrations in children wearing orthokeratology (ortho-k) lenses with a back optic zone diameter (BOZD) of 6 mm (6-MM group) or 5 mm (5-MM group) and their associations with axial elongation (AE) over two years.

Methods: Seventy Chinese children, aged 6 to < 11 years, with myopia between - 4.00 to - 0.75 D, were randomly allocated to 5-MM and 6-MM groups. Ocular aberrations were measured, rescaled to a 4-mm pupil, and fitted with a 6th order Zernike expansion. Measurements, including axial length, were taken prior to commencing ortho-k treatment and then every six months over two years.

Results: After two years, the 5-MM group displayed a smaller horizontal treatment zone (TZ) diameter (by 1.14 ± 0.11 mm, P < 0.001) and less AE (by 0.22 ± 0.07 mm, P = 0.002) compared with the 6-MM group. A greater increase in total root mean square (RMS) of higher-order aberrations (HOAs), primary spherical aberration (SA) ([Formula: see text], and coma were also observed in the 5-MM group at all follow-up visits. The horizontal TZ diameter was significantly associated with changes in RMS HOAs, SA (RMS, primary and secondary SA), and RMS coma. After controlling for baseline parameters, RMS HOAs, RMS SA, RMS coma, and primary ([Formula: see text] and secondary ([Formula: see text] SA were significantly associated with AE.

Conclusions: Ortho-k lenses with a smaller BOZD created a smaller horizontal TZ diameter and a significant increase in total HOAs, total SA, total coma, and primary SA and a decrease in secondary SA. Of these ocular aberrations, total HOAs, total SA, and primary SA were negatively correlated with AE over two years.

Trial Registration: ClinicalTrial.gov, NCT03191942. Registered 19 June 2017, https://clinicaltrials.gov/ct2/show/NCT03191942 .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10314406PMC
http://dx.doi.org/10.1186/s40662-023-00344-3DOI Listing

Publication Analysis

Top Keywords

axial elongation
8
children wearing
8
wearing orthokeratology
8
lenses optic
8
optic zone
8
zone diameter
8
optical changes
4
changes association
4
association axial
4
elongation children
4

Similar Publications

Myopic eye growth induces mechanical stretch, which can lead to structural and functional retinal alterations. Here, we investigated the effect of lens-induced myopic growth on the distribution of retinal ganglion cells (RGCs), glial fibrillary acidic protein (GFAP) expression and intensity, and peripapillary retinal nerve fiber layer (ppRNFL) thickness in common marmosets () induced with myopia continuously for six months, using immunohistochemistry and spectral-domain optical coherence tomography. We also explored the relationship between cellular structural parameters and the photopic negative response (PhNR) using full-field electroretinography.

View Article and Find Full Text PDF

Alterations in the Rice Coleoptile Metabolome During Elongation Under Submergence Stress.

Int J Mol Sci

December 2024

Department of Plant Physiology and Biochemistry, Faculty of Biology, St. Petersburg State University, Universitetskaya em., 7/9, 199034 St. Petersburg, Russia.

Plants known as obligate aerobes developed different mechanisms to overcome the damage incurred under oxygen limitation. One of the survival strategies to have commonly appeared in hydrophytic plants is the escape strategy, which accelerates plant axial organs' growth in order to escape hypoxic conditions as soon as possible. The present study aimed to distinguish the alterations in coleoptile elongation, viability and metabolic profiles in coleoptiles of slow- and fast-growing rice varieties.

View Article and Find Full Text PDF

Retinal glia in myopia: current understanding and future directions.

Front Cell Dev Biol

December 2024

Department of Ophthalmology, Laboratory of Optometry and Vision Sciences, Department of Optometry and Visual Science. West China Hospital, Sichuan University, Chengdu, Sichuan, China.

Article Synopsis
  • Myopia is a significant public health issue characterized by the elongation and thinning of various eye layers, leading to blurred vision due to defocused light.
  • The role of different glial cells in the retina, including astrocytes, Müller cells, and microglia, is being studied to understand their impact on myopia, particularly regarding support, response to inflammation, and mechanical stretching.
  • This review highlights existing research on the involvement of retinal glia in myopia and suggests avenues for future investigations in this area.
View Article and Find Full Text PDF

Association between axial elongation and corneal topography in children undergoing orthokeratology with different back optic zone diameters.

Eye Vis (Lond)

January 2025

Contact Lens and Visual Optics Laboratory, Optometry and Vision Science, Centre for Vision and Eye Research, Queensland University of Technology, Brisbane, Australia.

Purpose: To explore the associations between myopia defocus dosage (MDD), aberration coefficients (primary spherical aberration and coma), and axial elongation in children undergoing orthokeratology (ortho-k) with back optic zone diameters (BOZD) of 5 mm and 6 mm over 2 years.

Methods: Data from 80 participants from two ortho-k studies were analyzed: 22 and 58 children wore lenses with 5-mm and 6-mm BOZD, respectively. Four MDD metrics were calculated from corneal topography data over a 5-mm pupil for the 1-month and 24-month visits: the circumferential, flat, steep, and volumetric MDD.

View Article and Find Full Text PDF

Associations between choroidal thickness and rate of axial elongation in orthokeratology lens users.

Photodiagnosis Photodyn Ther

December 2024

Joint Shantou International Eye Center of Shantou University and The Chinese, University of Hong Kong, Shantou, Guangdong 515041, China. Electronic address:

Objective: To investigate the impact of using orthokeratology lenses (OK lenses) for one year on the axial length (AL) and choroidal thickness (ChT) in the 6 mm concentric central retinal region.

Methods: 36 myopic children (36 eyes) aged 8 to 16 years were enrolled. For the duration of one year, the OK group (18 subjects) utilized OK lenses, while the spectacles group (18 subjects) utilized single-vision spectacles as a control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!