Heavy metal levels appear to be associated with low bone mineral density (BMD) and the consequent osteoporosis risk, but the relationship with the disease has not been clearly defined. The altered expression pattern of numerous genes, including detoxifying genes, seems to play a pivotal role in this context, leading to increased susceptibility to several diseases, including osteoporosis. The purpose of this study is to analyse circulating heavy metals levels and the expression of detoxifying genes in osteoporotic patients (OPs, n = 31), compared with healthy subjects (CTRs, n = 32). Heavy metals concentration in plasma samples was determined by Inductively Coupled Plasma Mass Spectrometry (ICP-MS), and the subsequent expression analysis of NAD(P)H quinone dehydrogenase 1 (NQO1), Catalase (CAT), and Metallothionein 1E (MT1E) genes in Peripheral Blood Mononuclear Cells (PBMCs) was assessed by real-time polymerase chain reaction (qRT-PCR). Copper (Cu), mercury (Hg), molybdenum (Mo) and lead (Pb) were found to be significantly higher in the plasma of OPs compared to CTRs. Analysis of the expression levels of detoxifying genes showed a significant decrease in CAT and MT1E in OP group. In addition, Cu correlated positively with the expression levels of both CAT and MT1E in CTRs group and MT1E in OPs. This study shows an increased circulating concentration of certain metals combined with an altered expression pattern of detoxifying genes in OPs, highlighting a novel aspect to be investigated in order to better characterize the role of metals in the pathogenesis of osteoporosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10313696PMC
http://dx.doi.org/10.1038/s41598-023-37410-8DOI Listing

Publication Analysis

Top Keywords

detoxifying genes
16
expression detoxifying
8
osteoporotic patients
8
heavy metals
8
expression levels
8
cat mt1e
8
expression
6
genes
6
detoxifying
5
plasma
4

Similar Publications

Soil salinity and the scarcity of freshwater resources are two of the most common environmental constraints that negatively affect plant growth and productivity worldwide. The tomato ( Mill.) plant is moderately sensitive to salinity.

View Article and Find Full Text PDF

is a dominant member of the human gut microbiome and produces short-chain fatty acids (SCFAs). These promote immune system function and inhibit inflammation, making this microbe important for human health. Lactate is a primary source of gut SCFAs but its utilization by has not been explored.

View Article and Find Full Text PDF

Despite a high sucrose accumulation in its taproot vacuoles, sugar beet (Beta vulgaris subsp. vulgaris) is sensitive to freezing. Earlier, a taproot-specific accumulation of raffinose was shown to have beneficial effects on the freezing tolerance of the plant.

View Article and Find Full Text PDF

PHENYLALANINE AMMONIA-LYASE 2 regulates secondary metabolism and confers manganese tolerance in Stylosanthes guianensis.

Plant Physiol

January 2025

Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs/Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.

Stylo (Stylosanthes guianensis) is a tropical legume that exhibits considerable tolerance to manganese (Mn) toxicity, which severely constrains plant growth in acidic soils. To elucidate the Mn detoxification mechanisms in stylo, this study investigated the excess Mn-regulated metabolic profile of stylo roots and examined the role of metabolic enzymes in Mn tolerance. Excess Mn triggered oxidative stress in the two stylo genotypes tested.

View Article and Find Full Text PDF

Exploring novel pyrethroid resistance mechanisms through RNA-seq in from Colombia.

Curr Res Insect Sci

December 2024

Grupo Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia, Medellín 050010, Colombia.

Article Synopsis
  • Pyrethroids are widely used insecticides, but resistance in Colombian triatomine populations is poorly understood.
  • This study investigates resistance mechanisms to pyrethroids through genetic mutations, metabolic activity changes, and RNA-seq analyses.
  • Results show resistance in field populations to certain insecticides, highlighting potential gene regulation linked to detoxification, important for developing management strategies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!