Controlled viscous fingering in volatile fluid towards spontaneous evolution of ordered 3D patterns.

Sci Rep

Suman Mashruwala Advanced Microengineering Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.

Published: June 2023

Mimicking nature using artificial technologies has always been a quest/fascination of scientists and researchers of all eras. This paper characterizes viscous fingering instability-based, lithography-less, spontaneous, and scalable process towards fabrication of 3D patterns like nature-inspired honeycomb structures with ultra-high aspect ratio walls. Rich experimental characterization data on volatile polymer solution evolution in a uniport lifted Hele-Shaw cell (ULHSC) is represented on a non-dimensional phase plot. The plot with five orders of magnitude variation of non-dimensional numbers on each axis demarcates the regions of several newly observed phenomena: 'No retention', 'Bridge breaking', and 'Wall formation' with 'stable' and 'unstable' interface evolution. A new non-dimensional ratio of the velocity of evaporating static interface versus lifting velocity is proposed for the same. This phase plot along with physical insights into the phenomena observed, pave pathways for extending the method to multiport LHSC (MLHSC) to demonstrate multiwell honeycomb structures. The work thus establishes a solid foundation with valuable insights for scalable manufacturing of devices useful for application in biomedical and other domains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10313706PMC
http://dx.doi.org/10.1038/s41598-023-35510-zDOI Listing

Publication Analysis

Top Keywords

viscous fingering
8
honeycomb structures
8
phase plot
8
controlled viscous
4
fingering volatile
4
volatile fluid
4
fluid spontaneous
4
spontaneous evolution
4
evolution ordered
4
ordered patterns
4

Similar Publications

Hypothesis: Viscous fingering instabilities of air displacing water displacing mineral oil is controlled by the air injection rate. Given the lower viscosity of the water, air would tend to finger through the water and then after it reaches the oil, proceed to finger through the oil.

Experiments: In a radial Hele-Shaw cell, experiments were conducted on air injection into mineral oil and air injection into a volume of water at the center of the cell which in turn is surrounded by mineral oil.

View Article and Find Full Text PDF

Supercritical CO, as an environmentally friendly and pollution-free fluid, has been applied in various EOR techniques such as CO flooding. However, the low viscosity of the gas leads to issues such as early breakthrough, viscous fingering, and gravity override in practical applications. Although effective mobility-control methods, such as CO WAG (water alternating gas)-, CO foam-, and gel-based methods, have been developed to mitigate these phenomena, they do not fundamentally solve the problem of the high gas-oil mobility ratio, which leads to reduced gas sweep efficiency.

View Article and Find Full Text PDF

Fluid displacement within layered porous media is more complex than in nonlayered ones. Most of the previous studies placed a focus on the porous media with layerings perpendicular to the flow direction, and the effects of pore topology were often ignored. Therefore, this study aims to reveal the flow physics in porous media with layering parallel to the flow direction by accounting for the specific pore topology.

View Article and Find Full Text PDF

Polymer solution injection has emerged as a promising method for the remediation of NAPL (non-aqueous phase liquids)-contaminated aquifers. This technique enhances recovery efficiency by modifying viscous forces, stabilizing the displacement front, and minimizing channeling effects. However, there remains a significant gap in understanding the behavior of polymer solutions, particularly those with different molecular weights (MW), for mobilizing DNAPL (dense non-aqueous phase liquids) trapped in heterogeneous aquifers, especially within low-permeability layers.

View Article and Find Full Text PDF

Flow-driven pattern formation during coacervation of xanthan gum with a cationic surfactant.

Phys Chem Chem Phys

December 2024

Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany.

We experimentally demonstrate that the coacervation of a biopolymer can trigger a hydrodynamic instability when a coacervate is formed upon injection of a xanthan gum dispersion into a cationic surfactant (CTAB) solution. The local increase of the viscosity due to the coacervate formation induces a viscous fingering instability. Three characteristic displacement regimes were observed: a viscous fingering dominated regime, a buoyancy-controlled "volcano" regime and a "fan"-like regime determined by the coacervate membrane dynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!