Owing to their high deformation ability, 4D printed structures have various applications in origami structures, soft robotics and deployable mechanisms. As a material with programmable molecular chain orientation, liquid crystal elastomer is expected to produce the freestanding, bearable and deformable three-dimensional structure. However, majority of the existing 4D printing methods for liquid crystal elastomers can only fabricate planar structures, which limits their deformation designability and bearing capacity. Here we propose a direct ink writing based 4D printing method for freestanding continuous fiber reinforced composites. Continuous fibers can support freestanding structures during the printing process and improve the mechanical property and deformation ability of 4D printed structures. In this paper, the integration of 4D printed structures with fully impregnated composite interfaces, programmable deformation ability and high bearing capacity are realized by adjusting the off-center distribution of the fibers, and the printed liquid crystal composite can carry a load of up to 2805 times its own weight and achieve a bending deformation curvature of 0.33 mm at 150 °C. This research is expected to open new avenues for creating soft robotics, mechanical metamaterials and artificial muscles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10313695PMC
http://dx.doi.org/10.1038/s41467-023-39566-3DOI Listing

Publication Analysis

Top Keywords

liquid crystal
16
deformation ability
12
printed structures
12
continuous fiber
8
fiber reinforced
8
crystal elastomer
8
ability printed
8
soft robotics
8
bearing capacity
8
deformation
6

Similar Publications

In the search for novel natural products with hepatoprotective effects against acetaminophen-induced acute liver injury, the marine-derived fungus WHUF0198 was investigated. Seventeen undescribed pyranopyridone alkaloids, aculeapyridones A-Q (-), were isolated by bioactivity-guided fractionation of an extract obtained by coculture of the WHUF0198 with the mangrove-associated fungus sp. DM27.

View Article and Find Full Text PDF

We simplify, to first order in , the generalized, special relativistic treatment of a Doppler shift from an arbitrarily translating mirror originally derived by Ashworth and Davies [Proc. IEEE64, 280 (1976)IEEPAD0018-921910.1109/PROC.

View Article and Find Full Text PDF

This study explores the influence of charge distribution and molecular shape on the stability of ferroelectric nematic liquid crystalline phases through atomistic simulations of DIO molecules. We demonstrate the role of dipole-dipole interactions and molecular shape in achieving polar ordering by simulating charged and chargeless topologies, and analysing positional and orientational pair-distribution functions. The charged DIO molecules exhibit head-to-tail and side-by-side parallel alignments conducive to long-range polar order, whereas the chargeless molecules show no polar ordering.

View Article and Find Full Text PDF

Plasmonic Slippery Surface for Surface-Enhanced Raman Spectroscopy and Protein Adsorption Inhibition.

Anal Chem

January 2025

Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal 576104, India.

Slippery liquid-infused porous surfaces (SLIPSs) are a class of surface that offers low contact angle hysteresis and low tilt angle for water droplet shedding. This property also endows the surface with pinning-free evaporation, which in turn has been exploited for analyte concentration enrichment for Surface Enhanced Raman Spectroscopic applications and antibiofouling. Herein, we demonstrate a facile approach for creating SLIPS with low contact angle hysteresis and low tilt angle for water shedding by coating the equal-volume mixture of polydimethylsiloxane (PDMS) and silicone oil.

View Article and Find Full Text PDF

Novel Nonaqueous PD/PZ/NMP Absorbent for Energy-Efficient CO Capture: Insights into the Crystal-Phase Regulation Mechanism of the Powdery Product.

Environ Sci Technol

January 2025

School of Environmental Science and Engineering, Shenzhen Key Laboratory of Municipal Solid Waste Recycling Technology and Management, Southern University of Science and Technology, Shenzhen 518055, China.

Solid-liquid biphasic absorbents are a promising solution for overcoming the high-energy consumption challenge faced by liquid amine-based CO capture technologies. However, their practical applications are often hindered by difficulties in separating viscous solid-phase products. This study introduces a novel nonaqueous absorbent system (PD/PZ/NMP) composed of 4-amino-1-methylpiperidine (PD), piperazine (PZ), and -methyl-2-pyrrolidone (NMP), engineered to produce easily separable powdery products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!