Molecules are predicted to be chemically tunable towards high thermoelectric efficiencies and they could outperform existing materials in the field of energy conversion. However, their capabilities at the more technologically relevant temperature of 300 K are yet to be demonstrated. A possible reason could be the lack of a comprehensive technique able to measure the thermal and (thermo)electrical properties, including the role of phonon conduction. Here, by combining the break junction technique with a suspended heat-flux sensor, we measured the total thermal and electrical conductance of a single molecule, at room temperature, together with its Seebeck coefficient. We used this method to extract the figure of merit zT of a tailor-made oligo(phenyleneethynylene)-9,10-anthracenyl molecule with dihydrobenzo[b]thiophene anchoring groups (DHBT-OPE3-An), bridged between gold electrodes. The result is in excellent agreement with predictions from density functional theory and molecular dynamics. This work represents the first measurement, within the same setup, of experimental zT of a single molecule at room temperature and opens new opportunities for the screening of several possible molecules in the light of future thermoelectric applications. The protocol is verified using SAc-OPE3, for which individual measurements for its transport properties exist in the literature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10313753PMC
http://dx.doi.org/10.1038/s41467-023-39368-7DOI Listing

Publication Analysis

Top Keywords

single molecule
12
molecule room
8
room temperature
8
full thermoelectric
4
thermoelectric characterization
4
characterization single
4
molecule
4
molecule molecules
4
molecules predicted
4
predicted chemically
4

Similar Publications

As molecular research on hemp (Cannabis sativa L.) continues to advance, there is a growing need for the accumulation of more diverse genome data and more accurate genome assemblies. In this study, we report the three-way assembly data of a cannabidiol (CBD)-rich cannabis variety, 'Pink Pepper' cultivar using sequencing technology: PacBio Single Molecule Real-Time (SMRT) technology, Illumina sequencing technology, and Oxford Nanopore Technology (ONT).

View Article and Find Full Text PDF

Anti-miR21-conjugated DNA nanohydrogel for enhanced cancer therapy.

Biomater Adv

December 2024

Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea. Electronic address:

MicroRNAs (miRNAs) are non-coding, endogenous small single-stranded RNA molecules involved in post-transcriptional regulation of gene expression. It has been demonstrated that dysregulation of miRNA plays a major role in tumor formation, proliferation, and metastasis. Therefore, the delivery of anti-miRNA oligonucleotides to block the activity of these oncogenic miRNAs is a high-potential anti-cancer therapy approach.

View Article and Find Full Text PDF

Juice and decoction of leaves of Suaeda fruticosa, a halophytic medicinal plant of Cholistan desert, is traditionally used to treat rheumatism. The current study was carried out to probe into in vivo anti-nociceptive, anti-inflammatory, and anti-arthritic potential of ethanolic extract of the whole plant of S. fruticosa (Et-SF) and its bioactive molecules.

View Article and Find Full Text PDF

Nine new structurally diverse filicinic acid-based meroterpenoids (-) with four kinds of carbon skeletons were isolated from the rhizomes of . Their structures, including the absolute configurations, were elucidated by comprehensive analysis of spectroscopic data, quantum chemical calculations, and single-crystal X-ray diffraction. Structurally, compounds - feature an unprecedented 6/6/5/6/6/6 hexacyclic system with a rare oxaspiro[4.

View Article and Find Full Text PDF

We have conducted a systematic study employing density functional theory (DFT) and quantum theory of atoms in molecules (QTAIM) to explore the gas sensing capabilities of nitrogen-doped single vacancy graphene quantum dots (SV/3N) decorated with transition metals (TM = Mn, Co, Cu). We have studied the interactions between TM@SV/3N and four different target gases (AsH, NH, PH, and HS) through the computation of adsorption energies, charge transfer, noncovalent interaction, density of states, band gap, and work function for 12 distinct adsorption systems. Our comprehensive analysis included an in-depth assessment of sensors' stability, sensitivity, selectivity, and reusability for practical applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!