Pathophysiological roles of thrombospondin-4 in disease development.

Semin Cell Dev Biol

Department of Anesthesiology & Perioperative Care, School of Medicine, University of California Irvine, Irvine, CA 92697, USA. Electronic address:

Published: March 2024

AI Article Synopsis

  • Thrombospondin-4 (TSP-4) is a glycoprotein involved in various physiological and pathological processes due to its ability to interact with multiple extracellular matrix components.
  • Characterization of TSP-4 has revealed its crucial role in cell interactions, migration, tissue remodeling, and other functions, which can go awry in several disorders such as cardiovascular diseases and osteoporosis.
  • The article emphasizes TSP-4's potential as a biomarker and therapeutic target, highlighting its unique functions compared to other thrombospondins.

Article Abstract

Thrombospondin-4 (TSP-4) belongs to the extracellular matrix glycoprotein family of thrombospondins (TSPs). The multidomain, pentameric structure of TSP-4 allows its interactions with numerous extracellular matrix components, proteins and signaling molecules that enable its modulation to various physiological and pathological processes. Characterization of TSP-4 expression under development and pathogenesis of disorders has yielded important insights into mechanisms underlying the unique role of TSP-4 in mediating various processes including cell-cell, cell-extracellular matrix interactions, cell migration, proliferation, tissue remodeling, angiogenesis, and synaptogenesis. Maladaptation of these processes in response to pathological insults and stress can accelerate the development of disorders including skeletal dysplasia, osteoporosis, degenerative joint disease, cardiovascular diseases, tumor progression/metastasis and neurological disorders. Overall, the diverse functions of TSP-4 suggest that it may be a potential marker or therapeutic target for prognosis, diagnosis, and treatment of various pathological conditions upon further investigations. This review article highlights recent findings on the role of TSP-4 in both physiological and pathological conditions with a focus on what sets it apart from other TSPs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10753034PMC
http://dx.doi.org/10.1016/j.semcdb.2023.06.007DOI Listing

Publication Analysis

Top Keywords

extracellular matrix
8
physiological pathological
8
role tsp-4
8
pathological conditions
8
tsp-4
6
pathophysiological roles
4
roles thrombospondin-4
4
thrombospondin-4 disease
4
disease development
4
development thrombospondin-4
4

Similar Publications

Purpose: This study aims to elucidate on changes in biological pathways in rabbit corneas induced by two methods of light-activated corneal stiffening: topical application of riboflavin with dextran (RF-D) or WST11 with dextran (WST-D) followed by ultraviolet A (UVA) or near-infrared (NIR) illumination, respectively.

Methods: Rabbit corneas were mechanically de-epithelialized, then left untreated (N = 3) or treated with either RF-D/UVA (N = 3) or WST-D/NIR (N = 3). After one week, quantitative proteomics was performed on untreated, RF-D/UVA- and WST-D/NIR-treated corneas.

View Article and Find Full Text PDF

Interplay between Skeletal Muscle Catabolism and Remodeling of Arteriovenous Fistula via YAP1 Signaling.

J Am Soc Nephrol

January 2025

Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030.

Background: Arteriovenous (AV) fistulas are the preferred access for dialysis but have a high incidence of failure. This study aims to understand the crosstalk between skeletal muscle catabolism and AV fistula maturation failure.

Methods: Skeletal muscle metabolism and AV fistula maturation were evaluated in mice with chronic kidney disease (CKD).

View Article and Find Full Text PDF

Relaxin in pregnancy: a narrative review of a pleiotropic molecule.

Minerva Obstet Gynecol

January 2025

Unit of Obstetrics and Gynecology, Department of Medical and Surgical Sciences for Mothers, Children and Adults, Policlinic University Hospital, University of Modena and Reggio Emilia, Modena, Italy.

Introduction: Relaxin is a hormone primarily produced by the corpus luteum during pregnancy, and it plays a critical role in various physiological processes related to pregnancy and childbirth.

Evidence Acquisition: Studies have suggested a possible link between relaxin levels and preterm birth. Relaxin's effects on the cervix and pelvic ligaments suggest it could influence the mode of delivery.

View Article and Find Full Text PDF

Glycosaminoglycans (GAGs) are essential bone extracellular matrix molecules that regulate osteoblast differentiation. Numerous studies have explored endogenous and exogenous GAG osteoanabolic activities using appropriate in vitro and in vivo models. However, GAGs' underlying the mechanism of action and structure-function relationships need to be elucidated in detail.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!