Protein Kinase A Is Responsible for the Presynaptic Inhibition of Glycinergic and Glutamatergic Transmissions by Xenon in Rat Spinal Cord and Hippocampal CA3 Neurons.

J Pharmacol Exp Ther

Kyungpook National University, Daegu, Republic of Korea (I.S.J., M.Na); Kumamoto Health Science University, Kumamoto, Japan (K.N.); Kyushu University, Fukuoka, Japan (M.No); Kitamoto Hospital, Saitama, Japan (N.K., N.A.); Fukuoka University, Fukuoka, Japan (S.K.); and Kumamoto Kinoh Hospital, Kumamoto, Japan (H.N., N.A.)

Published: September 2023

The effects of a general anesthetic xenon (Xe) on spontaneous, miniature, electrically evoked synaptic transmissions were examined using the "synapse bouton preparation," with which we can clearly evaluate pure synaptic responses and accurately quantify pre- and postsynaptic transmissions. Glycinergic and glutamatergic transmissions were investigated in rat spinal sacral dorsal commissural nucleus and hippocampal CA3 neurons, respectively. Xe presynaptically inhibited spontaneous glycinergic transmission, the effect of which was resistant to tetrodotoxin, Cd, extracellular Ca, thapsigargin (a selective sarcoplasmic/endoplasmic reticulum Ca-ATPase inhibitor), SQ22536 (an adenylate cyclase inhibitor), 8-Br-cAMP (membrane-permeable cAMP analog), ZD7288 (an hyperpolarization-activated cyclic nucleotide-gated channel blocker), chelerythrine (a PKC inhibitor), and KN-93 (a CaMKII inhibitor) while being sensitive to PKA inhibitors (H-89, KT5720, and Rp-cAMPS). Moreover, Xe inhibited evoked glycinergic transmission, which was canceled by KT5720. Like glycinergic transmission, spontaneous and evoked glutamatergic transmissions were also inhibited by Xe in a KT5720-sensitive manner. Our results suggest that Xe decreases glycinergic and glutamatergic spontaneous and evoked transmissions at the presynaptic level in a PKA-dependent manner. These presynaptic responses are independent of Ca dynamics. We conclude that PKA can be the main molecular target of Xe in the inhibitory effects on both inhibitory and excitatory neurotransmitter release. SIGNIFICANCE STATEMENT: Spontaneous and evoked glycinergic and glutamatergic transmissions were investigated using the whole-cell patch clamp technique in rat spinal sacral dorsal commissural nucleus and hippocampal CA3 neurons, respectively. Xenon (Xe) significantly inhibited glycinergic and glutamatergic transmission presynaptically. As a signaling mechanism, protein kinase A was responsible for the inhibitory effects of Xe on both glycine and glutamate release. These results may help understand how Xe modulates neurotransmitter release and exerts its excellent anesthetic properties.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.123.001599DOI Listing

Publication Analysis

Top Keywords

glycinergic glutamatergic
20
glutamatergic transmissions
16
rat spinal
12
hippocampal ca3
12
ca3 neurons
12
glycinergic transmission
12
spontaneous evoked
12
protein kinase
8
kinase responsible
8
glycinergic
8

Similar Publications

Oligodendrocytes use postsynaptic proteins to coordinate myelin formation on axons of distinct neurotransmitter classes.

bioRxiv

November 2024

Section of Developmental Biology, Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA, 80445.

Article Synopsis
  • Axon myelination plays a crucial role in refining neuronal circuits by adjusting myelin sheath patterns across different axon types, but the coordination behind this process is still not fully understood.
  • Recent studies suggest that neuronal activity and the release of vesicles can stimulate the formation of myelin, and oligodendrocytes express proteins that may aid in their interaction with axons for proper myelination.
  • In larval zebrafish, the protein Gephyrin (Gphn) appears to selectively enhance myelin formation on GABAergic axons, with findings showing that in Gphn-deficient larvae, there were longer myelin sheaths on GABAergic axons
View Article and Find Full Text PDF

The broad spectrum of malignant syndromes.

Neurobiol Dis

December 2024

Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy; IRCCS Neuromed Institute, Via Atinense 18, 86077 Pozzilli, (IS), Italy. Electronic address:

Article Synopsis
  • - Malignant syndromes are serious medical conditions that develop rapidly and can lead to life-threatening complications if not treated promptly.
  • - These syndromes share similar clinical features and mechanisms, affecting various neurotransmitter systems, which highlight the need for urgent medical attention.
  • - Understanding the clinical aspects and underlying causes of malignant syndromes is crucial for effective management and reducing the risks of severe health consequences.
View Article and Find Full Text PDF

Auditory space has been conceptualized as a matrix of systematically arranged combinations of binaural disparity cues that arise in the superior olivary complex (SOC). The computational code for interaural time and intensity differences utilizes excitatory and inhibitory projections that converge in the inferior colliculus (IC). The challenge is to determine the neural circuits underlying this convergence and to model how the binaural cues encode location.

View Article and Find Full Text PDF

Glycine plays a pivotal role in the Central Nervous System (CNS), being a major inhibitory neurotransmitter as well as a co-agonist of Glutamate at excitatory NMDA receptors. Interactions involving Glycine and other neurotransmitters are the subject of different studies. Functional interactions among neurotransmitters include the modulation of release through release-regulating receptors but also through transporter-mediated mechanisms.

View Article and Find Full Text PDF

In silico evidence of bitopertin's broad interactions within the SLC6 transporter family.

J Pharm Pharmacol

September 2024

Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, CEP 74690-900, Goiânia-GO, Brazil.

The Glycine Transporter Type 1 (GlyT1) significantly impacts central nervous system functions, influencing glycinergic and glutamatergic neurotransmission. Bitopertin, the first GlyT1 inhibitor in clinical trials, was developed for schizophrenia treatment but showed limited efficacy. Despite this, bitopertin's repositioning could advance treating various pathologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!