The Paris Agreement goal of a net-zero equation will require decarbonization technologies in agriculture. Agri-waste biochar offers huge potential for carbon abatement in agricultural soils. The present experiment was carried out to compare the effects of residue management, viz., no residue (NR), residue incorporation (RI), and biochar (BC), as well as nitrogen options for emission reduction and carbon capture under the rice-wheat cropping sequence (RWCS) of the Indo-Gangetic Plains (IGP), India. After two cycles of cropping pattern, the analysis revealed that the biochar application (BC) reduces the RWCS's annual CO emissions by 18.1 % over residue incorporation (RI), while CH and NO emissions were reduced by 23 % and 20.6 % over RI and 11 % and 29.3 % over no residue (NR), respectively. The application of biochar-based nutrient composites with rice straw biourea (RSBU) at 100 % and 75 % significantly reduced greenhouse gases (CH and NO) compared to commercial urea at 100 %. The global warming potential of cropping systems recorded with BC was 7 % and 19.3 % lower than NR and RI, respectively, while 6-15 % under RSBU over urea 100 %. The annual carbon footprint (CF) under BC and NR decreased by 37.2 % and 30.8 % over RI, respectively. The net CF under residue burning was estimated to be the highest (132.5 Tg CO-Ce), followed by RI (55.3 Tg CO-Ce), showing net positive emissions; however, net negative emissions were found under a biochar-based system. The estimated annual carbon offset potential of a complete biochar system over residue burning, incorporation, and partial biochar as calculated was 189, 112, and 92 Tg CO-Ce yr, respectively. A biochar-based approach to managing rice straw had great carbon offset potential through a large drop in greenhouse gas emissions and an improved soil carbon pool under the rice wheat system along the IGP, India.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.165176DOI Listing

Publication Analysis

Top Keywords

carbon offset
12
offset potential
12
wheat system
8
indo-gangetic plains
8
residue incorporation
8
igp india
8
rice straw
8
urea 100 %
8
annual carbon
8
residue burning
8

Similar Publications

Tidal-driven NO emission is a stronger resister than CH to offset annual carbon sequestration in mangrove ecosystems.

Sci Total Environ

January 2025

State Key Laboratory of Marine Resource Utilization in South China Sea, School of Ecology, School of Marine Science and Engineering, Hainan University, Haikou, Hainan, China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, Hainan, China. Electronic address:

The mangrove ecosystems store a significant amount of "blue carbon" to mitigate global climate change, but also serve as hotspots for greenhouse gases (GHGs: CO, CH and NO) production. The CH and NO emissions offset mangrove carbon benefits, however, the extent of this effect remains inadequately quantified. By applying the 36 h time-series observations and mapping cruises, here we investigated the spatial and temporal distribution of GHGs and their fluxes in Dongzhaigang (DZG) bay, the largest mangrove ecosystem in China, at tidal and monthly scales.

View Article and Find Full Text PDF

Aeolian sandy soil is barren and readily leads to low fertilizer utilization rates and yields. Therefore, it is imperative to improve the water and fertilizer retention capacity of these soils. In this paper, three kinds of biochar (rice husk, corn stalk, and bamboo charcoal) and bentonite were used as amendments in the first year of the experiment.

View Article and Find Full Text PDF

Farming practices such as soil tillage, organic/mineral fertilization, irrigation, crop selection and residues management influence multiple ecosystem services provided by agricultural systems. These practices exhibit complex, non-linear interrelationships that affect crop productivity, water quality, and non-carbon dioxide greenhouse gases (GHG) emissions, possibly offsetting their benefits regarding soil organic carbon (SOC) sequestration. Current methodologies from the Intergovernmental Panel on Climate Change (IPCC) for assessing the impacts of alternative farming practices on GHG emissions rely on global or country-specific coefficients.

View Article and Find Full Text PDF

Increased but not pristine soil organic carbon stocks in restored ecosystems.

Nat Commun

January 2025

Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands.

Ecosystem restoration can contribute to climate change mitigation, as recovering ecosystems sequester atmospheric CO in biomass and soils. It is, however, unclear how much soil organic carbon (SOC) stocks recover across different restored ecosystems. Here, we show SOC recovery in different contexts globally by consolidating 41 meta-analyses into a second-order meta-analysis.

View Article and Find Full Text PDF

Agricultural systems are both emitters of greenhouse gases and have the potential to sequester carbon, especially agroforestry systems. Coffee agroforestry systems offer a wide range of intensities of use of agricultural inputs and densities and management of shade trees. We assessed the agronomic carbon footprint (up to farm gate) and modelled the carbon sequestration of a range of coffee agroforestry systems across 180 farms in Costa Rica and Guatemala.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!