A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionitgasecfchqj6sng3jcalpv4dfohdg7g): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

Vitamin B12 blocked Trypanosoma brucei rhodesiense-driven disruption of the blood brain barrier, and normalized nitric oxide and malondialdehyde levels in a mouse model. | LitMetric

AI Article Synopsis

  • Infection with Trypanosoma brucei rhodesiense (T.b.r) leads to severe Human African Trypanosomiasis (HAT), and a study explored the effects of vitamin B12 on this condition in mice.
  • Mice that received vitamin B12 showed improved survival rates, maintained blood-brain barrier integrity, and experienced less anemia and other hematological issues compared to those without the supplement.
  • The study concluded that vitamin B12 has antioxidant properties and may offer potential as a supplementary therapy for managing severe late-stage HAT due to its ability to mitigate various harmful effects of T.b.r infection.

Article Abstract

Infection with Trypanosoma brucei rhodesiense (T.b.r) causes acute Human African Trypanosomiasis (HAT) in Africa. This study determined the effect of vitamin B12 on T.b.r -driven pathological events in a mouse model. Mice were randomly assigned into four groups; group one was the control. Group two was infected with T.b.r; group three was supplemented with 8 mg/kg vitamin B12 for two weeks; before infection with T.b.r. For group four, administration of vitamin B12 was started from the 4th days post-infection with T.b.r. At 40 days post-infection, the mice were sacrificed to obtain blood, tissues, and organs for various analyses. The results showed that vitamin B12 administration enhanced the survival rate of T.b.r infected mice, and prevented T.b.r-induced disruption of the blood-brain barrier and decline in neurological performance. Notably, T.b.r-induced hematological alteration leading to anaemia, leukocytosis and dyslipidemia was alleviated by vitamin B12. T.b.r-induced elevation of the liver alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and total bilirubin as well as the kidney damage markers urea, uric acid and creatinine were attenuated by vitamin B12. Vitamin B12 blocked T.b.r-driven rise in TNF-α and IFN-γ, nitric oxide and malondialdehyde. T.b.r-induced depletion of GSH levels were attenuated in the presence of vitamin B12 in the brain, spleen and liver tissues; a clear indication of the antioxidant activity of vitamin B12. In conclusion, treatment with vitamin B12 potentially protects against various pathological events associated with severe late-stage HAT and presents a great opportunity for further scrutiny to develop an adjunct therapy for severe late-stage HAT.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.parint.2023.102775DOI Listing

Publication Analysis

Top Keywords

vitamin b12
44
vitamin
11
b12
10
b12 blocked
8
trypanosoma brucei
8
nitric oxide
8
oxide malondialdehyde
8
mouse model
8
pathological events
8
tbr group
8

Similar Publications

Rheumatoid arthritis (RA) is a chronic autoimmune disorder marked by joint inflammation and destruction. Recent studies emphasize the importance of vitamins D, B12, C, and K in managing RA and enhancing patient health. Vitamin D deficiency is common in RA patients and correlates with increased disease severity, indicating its potential to modulate immune responses and reduce inflammation.

View Article and Find Full Text PDF

Objective:  Studies on the effects of coronavirus disease 2019 (COVID-19) on pregnant mothers and their newborns, specifically in relation to their micronutrient status, fatty acids (FAs), and inflammatory status are sparse. We hypothesized that COVID-19 infection would adversely affect the transfer of nutrients, and FAs from mothers to their fetuses via the umbilical cord and maternal-fetal distribution of inflammatory cells. This study aimed to determine the effect of COVID-19 on micronutrients, inflammatory markers, and FAs profiles in pregnant mothers and their newborns' cord blood.

View Article and Find Full Text PDF

This study investigated the release mechanism and digestive characteristics of soy protein isolate (SPI)-loaded vitamin B during digestion. According to the molecular docking results, vitamin B interacted with the SPI through a hydrophobic pocket on the SPI surface. Spectroscopy revealed that the fluorescence intensity of the SPI and complex system increased with the digestion time.

View Article and Find Full Text PDF

The genus () is most often associated with human clinical samples and livestock. However, are also prevalent in the hindgut of the marine herbivorous fish (Silver Drummer), and analysis of their carbohydrate-active enzyme (CAZyme) encoding gene repertoires suggests degrade macroalgal biomass to support fish nutrition. To further explore host-associated traits unique to -derived , we compared 445 high-quality genomes of available in public databases (e.

View Article and Find Full Text PDF

Atomically thin 2D materials present the potential for advancing membrane separations via a combination of high selectivity (from molecular sieving) and high permeance (due to atomic thinness). However, the creation of a high density of precise nanopores (narrow-size-distribution) over large areas in 2D materials remains challenging, and nonselective leakage from nanopore heterogeneity adversely impacts performance. Here, we demonstrate protein-enabled size-selective defect sealing (PDS) for atomically thin graphene membranes over centimeter scale areas by leveraging the size and reactivity of permeating proteins to preferentially seal larger nanopores (≥4 nm) while preserving a significant amount of smaller nanopores (via steric hindrance).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!