A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Heavy vehicles' non-exhaust exhibits competitive contribution to PM compared with exhaust in port and nearby areas. | LitMetric

Heavy vehicles' non-exhaust exhibits competitive contribution to PM compared with exhaust in port and nearby areas.

Environ Pollut

Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China. Electronic address:

Published: September 2023

Heavy port transportation networks are increasingly considered as significant contributors of PM pollution compared to vessels in recent decades. In addition, evidence points to the non-exhaust emission of port traffic as the real driver. This study linked PM concentrations to varied locations and traffic fleet characteristics in port area through filter sampling. The coupled emission ratio-positive matrix factorisation (ER-PMF) method resolves source factors by avoiding direct overlap from collinear sources. In the port central and entrance areas, freight delivery activity emissions including vehicle exhaust and non-exhaust particles, as well as induced road dust resuspension, accounted for nearly half of the total contribution (42.5%-49.9%). In particular, the contribution of non-exhaust from denser traffic with high proportion of trucks was competitive and equivalent to 52.3% of that from exhaust. Backward trajectory statistical models further interpreted the notably larger-scale coverage of non-exhaust emissions in the port's central area. The distribution of PM were interpolated within the scope of the port and nearby urban areas, displaying the potential contribution of non-exhaust within 1.15 μg/m-4.68 μg/m, slightly higher than the urban detections reported nearby. This study may provide useful insights into the increasing percentage of non-exhaust from trucks in ports and nearby urban areas and facilitate supplementary data collection on Euro-VII type-approval limit settings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2023.122124DOI Listing

Publication Analysis

Top Keywords

port nearby
8
contribution non-exhaust
8
nearby urban
8
urban areas
8
non-exhaust
7
port
6
heavy vehicles'
4
vehicles' non-exhaust
4
non-exhaust exhibits
4
exhibits competitive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!