Background: The actin cytoskeleton has a crucial role in the maintenance of the immune homeostasis by controlling various cellular processes, including cell migration. Mutations in TTC7A have been described as the cause of a primary immunodeficiency associated to different degrees of gut involvement and alterations in the actin cytoskeleton dynamics.
Objectives: This study investigates the impact of TTC7A deficiency in immune homeostasis. In particular, the role of the TTC7A/phosphatidylinositol 4 kinase type III α pathway in the control of leukocyte migration and actin dynamics.
Methods: Microfabricated devices were leveraged to study cell migration and actin dynamics of murine and patient-derived leukocytes under confinement at the single-cell level.
Results: We show that TTC7A-deficient lymphocytes exhibit an altered cell migration and reduced capacity to deform through narrow gaps. Mechanistically, TTC7A-deficient phenotype resulted from impaired phosphoinositide signaling, leading to the downregulation of the phosphoinositide 3-kinase/AKT/RHOA regulatory axis and imbalanced actin cytoskeleton dynamics. TTC7A-associated phenotype resulted in impaired cell motility, accumulation of DNA damage, and increased cell death in dense 3-dimensional gels in the presence of chemokines.
Conclusions: These results highlight a novel role of TTC7A as a critical regulator of lymphocyte migration. Impairment of this cellular function is likely to contribute to the pathophysiology underlying progressive immunodeficiency in patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jaci.2023.06.016 | DOI Listing |
Life (Basel)
January 2025
The Laboratory of Personalized Chemo-Radiation Therapy, Institute of Future Biophysics, Moscow 141700, Russia.
Cancer-related deaths primarily occur due to metastasis, a process involving the migration and invasion of cancer cells. In most solid tumors, metastasis occurs through collective cell migration (CCM), guided by "cellular leaders". These leader cells generate forces through actomyosin-mediated protrusion and contractility.
View Article and Find Full Text PDFBiomedicines
January 2025
Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
For investigating the host response in associated pneumonia, we analyzed the host genetic sequences obtained from metagenomic next-generation sequencing (mNGS). The samples for mNGS were bronchoalveolar lavage fluid (BALF) collected from the lungs of patients infected with and from patients without bacterial infections. BALF samples from patients with pneumonia were collected from the lungs of patients infected with with New Delhi metallo-β-lactamase (NDM, before treatment), A.
View Article and Find Full Text PDFBiomedicines
January 2025
Second Department of Internal Medicine, Division of Nephrology, Kansai Medical University, Hirakata 573-1010, Japan.
: Charcot-Marie-Tooth (CMT) disease is an inherited peripheral neuropathy primarily involving motor and sensory neurons. Mutations in INF2, an actin assembly factor, cause two diseases: peripheral neuropathy CMT-DIE (MIM614455) and/or focal segmental glomerulosclerosis (FSGS). These two phenotypes arise from the progressive degeneration affecting podocytes and Schwann cells.
View Article and Find Full Text PDFBiology (Basel)
January 2025
Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi 214081, China.
(1) Background: Global climate change is intensifying, and the vigorous development and utilization of saline-alkali land is of great significance. As an important economic aquatic species in the context of saline-alkali aquaculture, it is highly significant to explore the regulatory mechanisms of under alkaline conditions. In particular, the brain (cerebral ganglion for crustaceans) serves as a vital regulatory organ in response to environmental stress; (2) Methods: In this study, a comparative transcriptome approach was employed to investigate the key regulatory genes and molecular regulatory mechanisms in the cerebral ganglion of under alkaline stress.
View Article and Find Full Text PDFCell Mol Biol Lett
January 2025
School of Medicine, Shanghai University, Shanghai, 200444, China.
Background: Interfacial heterogeneity is widely explored to reveal molecular mechanisms of force-mediated pathways due to biased tension. However, the influence of cell density,, curvature, and interfacial heterogeneity on underlying pathways of mechanotransduction is obscure.
Methods: Polydimethylsiloxane (PDMS)-based stencils were micropatterned to prepare the micropores for cell culture.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!