Substance P reversibly compromises the integrity and function of blood-brain barrier.

Peptides

Academic Unit of Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK. Electronic address:

Published: September 2023

Background: Substance P (SP) plays a role in vasodilatation and tissue integrity through its receptor, neurokinin 1 (NK1R). However, its specific effect on blood-brain barrier (BBB) remains unknown.

Methods: The impact of SP on the integrity/function of human BBB model in vitro, composed of brain microvascular endothelial cells (BMECs), astrocytes and pericytes, was assessed by measurements of transendothelial electrical resistance and paracellular flux of sodium fluorescein (NaF), respectively in the absence/presence of specific inhibitors targeting NK1R (CP96345), Rho-associated protein kinase (ROCK; Y27632) and nitric oxide synthase (NOS; N(G)-nitro-L-arginine methyl ester). Sodium nitroprusside (SNP), a NO donor, was employed as a positive control. The levels of tight junction proteins, zonula occludens-1, occludin and claudin-5 alongside RhoA/ROCK/myosin regulatory light chain-2 (MLC2) and extracellular signal‑regulated protein kinase (Erk1/2) proteins were detected by western analyses. Subcellular localisations of F-actin and tight junction proteins were visualized by immunocytochemistry. Flow cytometry was used to detect transient calcium release.

Results: Exposure to SP increased RhoA, ROCK2 and phosphorylated serine-19 MLC2 protein levels and Erk1/2 phosphorylation in BMECs which were abolished by CP96345. These increases were independent of the changes in intracellular calcium availability. SP perturbed BBB in a time-dependent fashion through induction of stress fibres. Changes in tight junction protein dissolution or relocalisation were not involved in SP-mediated BBB breakdown. Inhibition of NOS, ROCK and NK1R mitigated the effect of SP on BBB characteristics and stress fibre formation.

Conclusion: SP promoted a reversible decline in BBB integrity independent of tight junction proteins expression or localisation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.peptides.2023.171048DOI Listing

Publication Analysis

Top Keywords

tight junction
16
junction proteins
12
blood-brain barrier
8
protein kinase
8
bbb
6
substance reversibly
4
reversibly compromises
4
compromises integrity
4
integrity function
4
function blood-brain
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!