Benzo(a)pyrene regulates chaperone-mediated autophagy via heat shock protein 90.

Toxicol Lett

School of Pharmacy, Inner Mongolia Medical University, Hohhot, China; Inner Mongolia Autonomous Region Engineering Research Center of new Pharmaceutical Screening, Inner Mongolia Medical University, Hohhot, China. Electronic address:

Published: July 2023

Aims: Some studies have shown that the Benzo(a)pyrene (BaP) exposure induced oxidative damage, DNA damage and autophagy, but the molecular mechanism is not clear. Heat shock protein 90 (HSP90) is regarded as an important target in cancer therapy and a key factor in autophagy. Therefore, this study aims to clarify the new mechanism of BaP regulating CMA through HSP90.

Main Methods: C57BL mice were fed with BaP at a dose of 25.3 mg/kg. A549 cells were treated with different concerntrations of BaP, and MTT assay was used to observe the effect of BaP on the proliferation of A549 cells. DNA damage was detected by alkaline comet assay. Focus experiment for detection of γ-H2AX by immunofluorescence. The mRNA expression of HSP90, HSC70 and Lamp-2a was detected by qPCR. The protein expressions of HSP90, HSC70 and Lamp-2a were detected by Western blot. Next, we knocked down HSP90 expression by the HSP90 Inhibitor, NVP-AUY 922, exposed or HSP90α shRNA lentivirus transduction in A549 cells.

Key Findings: In these studies, we first found that heat shock protein 90 (HSP90), heat shock cognate 70 (HSC70) and lysosomal-associated membrane protein type 2 receptor (Lamp-2a) expressions of C57BL mice lung tissue and A549 cells exposed to BaP were significant increase, as well as BaP induced DNA double-strand breaks (DSBs) and activated DNA damage responses, as evidenced by comet assay and γ-H2AX foci analysis in A549 cells. Our results demonstrated BaP induced CMA and caused DNA damage. Next, we knocked down HSP90 expression by the HSP90 Inhibitor, NVP-AUY 922, exposed or HSP90α shRNA lentivirus transduction in A549 cells. HSC70 and Lamp-2a expressions of these cells exposed to BaP were not significant increase, which showed that BaP inducted CMA was mediated by HSP90. Further, HSP90α shRNA prevented BaP induced of BaP which suggested BaP regulated CMA and caused DNA damage by HSP90. Our results elucidated a new mechanism of BaP regulated CMA through HSP90.

Significance: BaP regulated CMA through HSP90. HSP90 is involved in the regulation of gene instability induced by DNA damage by BaP, which promotes CMA. Our study also revealed that BaP regulates CMA through HSP90. This study fills the gap of the effect of BaP on autophagy and its mechanism, which will lead to a more comprehensive understanding of the action mechanism of BaP.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxlet.2023.06.011DOI Listing

Publication Analysis

Top Keywords

dna damage
24
a549 cells
20
bap
19
heat shock
16
hsp90
13
shock protein
12
mechanism bap
12
expression hsp90
12
hsc70 lamp-2a
12
hsp90α shrna
12

Similar Publications

Understanding kinase action requires precise quantitative measurements of their activity . In addition, the ability to capture spatial information of kinase activity is crucial to deconvolute complex signaling networks, interrogate multifaceted kinase actions, and assess drug effects or genetic perturbations. Here we developed a proteomic kinase activity sensor platform (ProKAS) for the analysis of kinase signaling using mass spectrometry.

View Article and Find Full Text PDF

The shelterin complex protects chromosome ends from the DNA damage repair machinery and regulates telomerase access to telomeres. Shelterin is composed of six proteins (TRF1, TRF2, TIN2, TPP1, POT1 and RAP1) that can assemble into various subcomplexes . However, the stoichiometry of the shelterin complex and its dynamic association with telomeres in cells is poorly defined.

View Article and Find Full Text PDF

Unlabelled: In vitro fertilization (IVF) is a widely used assisted reproductive technology to achieve a successful pregnancy. However, the acquisition of oxidative stress in embryo in vitro culture impairs its competence. Here, we demonstrated that a nuclear coding gene, methyltransferase- like protein 7A (METTL7A), improves the developmental potential of bovine embryos.

View Article and Find Full Text PDF

In duplex DNA, A-T and G-C form Watson-Crick base pairs, and Hoogsteen pairing only dominates upon protein binding or DNA damage. Using NMR, we show that an A-T Hoogsteen base pair previously observed in crystal structures of transposon DNA hairpins bound to TnpA protein forms in solution even in the absence of TnpA. This Hoogsteen base pair, located adjacent to a dinucleotide apical loop, exists in dynamic equilibrium with a minor Watson-Crick conformation (population ∼11% and lifetime ∼55 µs).

View Article and Find Full Text PDF

Huntington's Disease (HD), a progressive neurodegenerative disorder with no disease-modifying therapies, is caused by a CAG repeat expansion in the HD gene encoding polyglutamine-expanded huntingtin (HTT) protein. Mechanisms of HD cellular pathogenesis and cellular functions of the normal and mutant HTT proteins are still not completely understood. HTT protein has numerous interaction partners, and it likely provides a scaffold for assembly of multiprotein complexes many of which may be altered in HD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!