Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pesticide misuse has well-documented detrimental effects on ecosystems, with Nile tilapia (Oreochromis niloticus) being particularly vulnerable. The current study focuses on the impact of widely used sugarcane crop pesticides, Imazapic (IMZ) and Methyl Parathion (MP), on tilapia gill tissues and their lipid membranes. This investigation was motivated by the specific role of the lipid membrane in transport regulation. Bioinspired cell membrane models, including Langmuir monolayers and liposomes (LUVs and GUVs), were utilized to explore the interaction of IMZ and MP. The results revealed electrostatic interactions between IMZ and MP and the polar head groups of lipids, inducing morphological alterations in the lipid bilayer. Tilapia gill tissue exposed to the pesticides exhibited hypertrophic increases in primary and secondary lamellae, total lamellar fusion, vasodilation, and lifting of the secondary lamellar epithelium. These alterations can lead to compromised oxygen absorption by fish and subsequent mortality. This study not only highlights the harmful effects of the pesticides IMZ and MP, but also emphasizes the crucial role of water quality in ecosystem well-being, even at minimal pesticide concentrations. Understanding these impacts can better inform management practices to safeguard aquatic organisms and preserve ecosystem health in pesticide-affected environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2023.131943 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!