Investigation of post mortem brain, rectal and forehead temperature relations.

J Therm Biol

Institute of Forensic Medicine, Department of Biomedical Engineering, University of Basel, Basel, Switzerland; Institute of Forensic Medicine, Health Department Basel-Stadt, Basel, Switzerland. Electronic address:

Published: July 2023

It is well known that magnetic resonance (MR) imaging is temperature sensitive, which is highly relevant for post mortem examinations. Therefore, the determination of the exact temperature of the investigated body site, e.g. the brain, is crucial. However, direct temperature measurements are invasive and inconvenient. Thus, in view of post mortem MR imaging of the brain, this study aims at investigating the relation between the brain and the forehead temperature for modelling the brain temperature based on the non-invasive forehead temperature. In addition, the brain temperature will be compared to the rectal temperature. Brain temperature profiles measured in the longitudinal fissure between the brain hemispheres, as well as rectal and forehead temperature profiles of 16 deceased were acquired continuously. Linear mixed, linear, quadratic and cubic models were fitted to the relation between the longitudinal fissure and the forehead and between the longitudinal fissure and the rectal temperature, respectively. Highest adjusted R values were found between the longitudinal fissure and the forehead temperature, as well as between the longitudinal fissure and the rectal temperature using a linear mixed model including the sex, environmental temperature and humidity as fixed effects. The results indicate that the forehead, as well as the rectal temperature, can be used to model the brain temperature measured in the longitudinal fissure. Comparable fit results were observed for the longitudinal fissure-forehead temperature relation and for the longitudinal fissure-rectal temperature relation. Combined with the fact that the forehead temperature overcomes the problem of measurement invasiveness, the results suggest using the forehead temperature for modelling the brain temperature in the longitudinal fissure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtherbio.2023.103615DOI Listing

Publication Analysis

Top Keywords

forehead temperature
28
longitudinal fissure
28
temperature
22
brain temperature
20
rectal temperature
16
post mortem
12
brain
10
forehead
9
longitudinal
9
rectal forehead
8

Similar Publications

Cholinergic urticaria (CholU) is characterized by itching and/or stinging, painful micro wheals due to systemic heating. There are two standardized protocols to diagnose CholU using an exercise bike with heart rate or warming passive. The objective is to provide an affordable, new, low-tech test to assist the diagnostic.

View Article and Find Full Text PDF

There is no doubt that global warming, with its extreme heat events, is having an increasing impact on human health. Heat is not independent of ambient temperature but acts synergistically with relative humidity (RH) to increase the risk of several diseases, such as cardiovascular and pulmonary diseases. Although the skin is the organ in direct contact with the environment, it is currently unknown whether skin health is similarly affected.

View Article and Find Full Text PDF

Background: Accurate core temperature measurement in children is crucial; however, measuring esophageal temperature (TE) using a supraglottic airway device (SAD) can be challenging. Second-generation SADs, which have a gastric channel, can measure TE, and reduce gastric air volume. This study aimed to compare TE, measured using a probe inserted through the SAD gastric channel, with tympanic membrane (TTM) and forehead (TZHF) temperatures, measured using a zero-heat-flux cutaneous thermometer, with rectal temperature (TR).

View Article and Find Full Text PDF

Purpose: The purpose of this study is to measure the brain temperature (T) by using H magnetic resonance spectroscopy (H MRS) thermometry and investigate its age and gender differences in healthy adults. The brain temperature was further compared with the body temperature (T) to investigate the possible existence of brain-body temperature gradient (∆T).

Methods: A total of 80 subjects were included in this study.

View Article and Find Full Text PDF

Background: Enlarged pores are amidst one of the top cosmetic concerns, especially among Chinese. Many small-group studies have been conducted in understanding their prevalence and beauty relevance. Nonetheless, population-level investigations are still lacking because of gaps in data collection and processing of large-scale studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!