A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An in situ thermal cross-linking binder for silicon-based lithium ion battery. | LitMetric

An in situ thermal cross-linking binder for silicon-based lithium ion battery.

J Colloid Interface Sci

State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, Ningxia, China. Electronic address:

Published: November 2023

Silicon has been regarded as one of the most promising anode materials for lithium-ion batteries (LIBs) due to its highest specific capacity and low (de)lithiation potential, however, the development of practical applications for silicon are still hindered by devastating volume expansion and low conductance. Herein, we have proposed an in situ thermally cross-linked water-soluble PA@PAA binder for silicon-based LIBs to construct dynamic cross-linking network. Specifically, ester bonds between -P-OH in phytic acid (PA) and -COOH in PAA, which are generated by thermal coupling, are designed to synergize with hydrogen bonds between the PA@PAA binder and silicon particles to dissipate the high mechanical stresses, which is verified by theoretical calculation. GO is further adopted to protect silicon particles from immediate contact with electrolyte to improve initial coulombic efficiency (ICE). A range of heat treatment temperatures is explored to optimize the previous process conditions and the optimum electrochemical performance is provided by Si@PA@PAA-220 electrodes with high reversible specific capacity of 1322.1 mAh/g at a current density of 0.5A/g after 510 cycles. Characterization has also revealed that PA@PAA is involved in electrochemical process and tunes the ratio of organic (LiPF/LiPOF)-inorganic (LiF) to consolidate solid electrolyte interface (SEI) during cycles. In brief, this applicable fascial in situ strategy can effectively improve the stability of silicon anodes for high energy density lithium-ion batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2023.06.158DOI Listing

Publication Analysis

Top Keywords

binder silicon-based
8
lithium-ion batteries
8
specific capacity
8
pa@paa binder
8
silicon particles
8
silicon
5
situ thermal
4
thermal cross-linking
4
cross-linking binder
4
silicon-based lithium
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!