Aims: Aging is a dominant driver of atherosclerosis and induces a series of immunological alterations, called immunosenescence. Given the demographic shift towards elderly, elucidating the unknown impact of aging on the immunological landscape in atherosclerosis is highly relevant. While the young Western diet-fed Ldlr-deficient (Ldlr-/-) mouse is a widely used model to study atherosclerosis, it does not reflect the gradual plaque progression in the context of an aging immune system as occurs in humans.

Methods And Results: Here, we show that aging promotes advanced atherosclerosis in chow diet-fed Ldlr-/- mice, with increased incidence of calcification and cholesterol crystals. We observed systemic immunosenescence, including myeloid skewing and T-cells with more extreme effector phenotypes. Using a combination of single-cell RNA-sequencing and flow cytometry on aortic leucocytes of young vs. aged Ldlr-/- mice, we show age-related shifts in expression of genes involved in atherogenic processes, such as cellular activation and cytokine production. We identified age-associated cells with pro-inflammatory features, including GzmK+CD8+ T-cells and previously in atherosclerosis undefined CD11b+CD11c+T-bet+ age-associated B-cells (ABCs). ABCs of Ldlr-/- mice showed high expression of genes involved in plasma cell differentiation, co-stimulation, and antigen presentation. In vitro studies supported that ABCs are highly potent antigen-presenting cells. In cardiovascular disease patients, we confirmed the presence of these age-associated T- and B-cells in atherosclerotic plaques and blood.

Conclusions: Collectively, we are the first to provide comprehensive profiling of aged immunity in atherosclerotic mice and reveal the emergence of age-associated T- and B-cells in the atherosclerotic aorta. Further research into age-associated immunity may contribute to novel diagnostic and therapeutic tools to combat cardiovascular disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10676459PMC
http://dx.doi.org/10.1093/cvr/cvad099DOI Listing

Publication Analysis

Top Keywords

ldlr-/- mice
12
age-associated b-cells
12
age-associated immunity
8
expression genes
8
genes involved
8
cardiovascular disease
8
b-cells atherosclerotic
8
age-associated
6
atherosclerosis
6
single-cell profiling
4

Similar Publications

Background: Neurodegenerative disorders of aging are characterized by the progressive accumulation of proteins such as α-synuclein (α-syn) and amyloid beta (Aβ). Misfolded and aggregated α-syn has been implicated in neurological disorders such as Parkinson's disease (PD), and Dementia with Lewy Bodies (DLB), but less so in Alzheimer's Disease (AD) despite the fact that synuclein pathology is present in over 50% of postmortem brains of AD patients. We are now expanding on our previous studies which showed positive therapeutic effects of downregulating α-syn in AD mice to understand the overall brain transcriptomic and mechanistic changes induced by treatment.

View Article and Find Full Text PDF

Background: Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of mortality globally. Hypercholesterolemia accelerates atherosclerotic development and is an independent modifiable risk factor for ASCVD. Reducing cholesterol levels is effective in preventing ASCVD.

View Article and Find Full Text PDF

The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) progressing to metabolic dysfunction-associated steatohepatitis (MASH), characterized by hepatic inflammation, has significantly increased in recent years due to unhealthy dietary practices and sedentary lifestyles. Cathepsin D (CTSD), a lysosomal protease involved in lipid homeostasis, is linked to abnormal lipid metabolism and inflammation in MASH. Although primarily intracellular, CTSD can be secreted extracellularly.

View Article and Find Full Text PDF

Introduction: T-cadherin, a non-canonical member of the cadherin superfamily, was initially identified for its involvement in homophilic recognition within the nervous and vascular systems. Apart from its adhesive function, T-cadherin acts as a receptor for two ligands: LDL, contributing to atherogenic processes, and HMW adiponectin, a hormone with well-known cardiovascular protective properties. However, the precise role of T-cadherin in adipose tissue remains elusive.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is one of the leading public health concerns in the world. Therapeutic hypothermia is routinely used in severe TBI, and pathophysiological hyperthermia, frequently observed in TBI patients, has an unclear impact on drug transport in the injured brain due to a lack of study on its effects. We investigated the effect of post-traumatic therapeutic hypothermia at 33°C and pathophysiological hyperthermia at 39°C on brain transport and cell uptake of neuroprotectants after TBI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!