Optically induced mechanical torque driving rotation of small objects requires the presence of absorption or breaking cylindrical symmetry of a scatterer. A spherical nonabsorbing particle cannot rotate due to the conservation of the angular momentum of light upon scattering. Here, we suggest a novel physical mechanism for the angular momentum transfer to nonabsorbing particles via nonlinear light scattering. The breaking of symmetry occurs at the microscopic level manifested in nonlinear negative optical torque due to the excitation of resonant states at the harmonic frequency with higher projection of angular momentum. The proposed physical mechanism can be verified with resonant dielectric nanostructures, and we suggest some specific realizations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.130.243802 | DOI Listing |
J Opt Soc Am A Opt Image Sci Vis
August 2024
We study properties of a light field at the tight focus of the superposition of two different-order cylindrical vector beams (CVBs). In the source plane, this superposition has a polarization singularity index amounting to the half-sum of the numbers of two constituent CVBs, while having neither spin angular momentum (SAM) nor transverse energy flow. We show that if the constituent CVBs have different-parity numbers, in the focal plane there occur areas that have opposite-sign longitudinal SAM projections, alongside areas of opposite-handed energy flows rotating on closed paths (clockwise and anticlockwise).
View Article and Find Full Text PDFIn this paper we propose an information encoding method based on a segmented vortex beam. The segmented vortex beam with a single uniform-intensity ring and a combination of multiple topological charges is designed for information encoding. The radius of the beam can be designed to be arbitrary, with multiple orbital angular momentum states superimposed along the ring.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, College of Science, University of Thi-Qar, Nasiriya, Iraq.
This work studies the generation of the orbital angular momentum (OAM) beam in the double quantum dot-metal nanoparticle (DQD-MNP) system under the application of the OAM beam. First, an analytical model is derived to attain the relations of probe and generated fields as a distance function in the DQD-MNP system under OAM applied field and spontaneously generated coherence (SGC) components. The calculation here is of material property; it differs from others by calculating energy states of the DQDs and the computation of the transition momenta between quantum dot (QD)-QD and QD-wetting layer (WL) transitions.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
This study investigates the motion of an electron in a Coulomb potential driven by an intense linearly polarized XUV laser pulse analyzed using Gordon-Volkov wave functions. The wave function is decomposed into spherical partial waves to model the scattered electron wave packet after the recollision with a proton. This interaction triggers high harmonic generation, producing coherent X-ray pulses with frequencies that are integer multiples of the XUV field.
View Article and Find Full Text PDFJ Biomech
January 2025
Stevens Institute of Technology, Hoboken, NJ, USA. Electronic address:
This study revealed how high school pitchers generated momenta during fastballs and changeups at a whole-body level. Baseball pitchers control ground reaction forces to generate whole-body momentum. Pitchers attempt to throw as fast and accurately as possible during fastballs but also need to throw off-speed pitches like changeups to deceive batters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!