A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Long-Range Orbital Torque by Momentum-Space Hotspots. | LitMetric

AI Article Synopsis

  • Orbital responses in ferromagnets are often thought to be short-ranged due to strong crystal field effects, but recent findings reveal they can be surprisingly long-ranged.
  • When an external electric field is applied to a nonmagnet in a bilayer with a ferromagnet, this induces significant orbital angular momentum in the ferromagnet that exceeds the typical spin dephasing length.
  • The unique behavior arises from crystal symmetry creating "hotspots" for orbital response, potentially allowing for new applications in orbitronic devices and serving as testable evidence for orbital transport.

Article Abstract

While it is often assumed that the orbital response is suppressed and short ranged due to strong crystal field potential and orbital quenching, we show that the orbital response can be remarkably long ranged in ferromagnets. In a bilayer consisting of a nonmagnet and a ferromagnet, spin injection from the interface results in spin accumulation and torque in the ferromagnet, which rapidly oscillate and decay by spin dephasing. In contrast, even when an external electric field is applied only on the nonmagnet, we find substantially long-ranged induced orbital angular momentum in the ferromagnet, which can go far beyond the spin dephasing length. This unusual feature is attributed to nearly degenerate orbital characters imposed by the crystal symmetry, which form hotspots for the intrinsic orbital response. Because only the states near the hotspots contribute dominantly, the induced orbital angular momentum does not exhibit destructive interference among states with different momentum as in the case of the spin dephasing. This gives rise to a distinct type of orbital torque on the magnetization, increasing with the thickness of the ferromagnet. Such behavior may serve as critical long-sought evidence of orbital transport to be directly tested in experiments. Our findings open the possibility of using long-range orbital response in orbitronic device applications.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.130.246701DOI Listing

Publication Analysis

Top Keywords

orbital response
16
spin dephasing
12
orbital
10
long-range orbital
8
orbital torque
8
ferromagnet spin
8
induced orbital
8
orbital angular
8
angular momentum
8
spin
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!