GP-2250, a novel anticancer agent, severely limits the energy metabolism, as demonstrated by the inhibition of hexokinase 2 and glyceraldehyde-3-phosphate dehydrogenase and a decrease of ATP. Rescue experiments with supplementary pyruvate or oxaloacetate demonstrated that a TCA cycle deficit largely contributed to cytotoxicity. Activation of the energy-deficit sensor, AMP-dependent protein kinase, was associated with increased phosphorylation of acetyl-CoA carboxylase and Raptor, pointing to a possible deficit in the synthesis of fatty acids and proteins as essential cell components. Binding of p65 to DNA was dose-dependently reduced in nuclear lysates. A transcriptional deficit of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) was substantiated by the downregulation of cyclin D1 and of the anti-apoptotic Bcl2, in line with reduction in tumour cell proliferation and induction of apoptosis, respectively. The upregulation of p53 concomitant with an excess of ROS supported apoptosis. Thus, the anticancer activity of GP-2250 is a result of disruption of energy metabolism and inhibition of tumour promotion by NF-κB.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10339077PMC
http://dx.doi.org/10.1111/jcmm.17825DOI Listing

Publication Analysis

Top Keywords

energy metabolism
12
gp-2250 novel
8
novel anticancer
8
anticancer agent
8
agent inhibits
4
inhibits energy
4
metabolism activates
4
activates amp-kinase
4
amp-kinase impairs
4
impairs nf-kb
4

Similar Publications

The transport of metabolites across the inner mitochondrial membrane (IMM) is crucial for maintaining energy balance and efficient distribution of metabolic intermediates between cellular compartments. Under abiotic stress, mitochondrial function becomes particularly critical, activating complex signaling pathways essential for plant stress responses. These pathways modulate stress-responsive gene expression, influencing key physiological processes such as cell respiration and senescence, helping plants adapt to stress.

View Article and Find Full Text PDF

Tumor necrosis factor receptor-associated factor 1 (TRAF1) is a crucial signaling adaptor involved in multiple cellular events. However, its role in regulating osteoclastogenesis and energy metabolism remains unclear. Here, we report that TRAF1 promotes osteoclastogenesis and oxidative phosphorylation (OXPHOS).

View Article and Find Full Text PDF

The developmental lipidome of Nippostrongylus brasiliensis.

Parasit Vectors

January 2025

Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia.

Background: Nippostrongylus brasiliensis-a nematode of rodents-is commonly used as a model to study the immunobiology of parasitic nematodes. It is a member of the Strongylida-a large order of socioeconomically important parasitic nematodes of animals. Lipids are known to play essential roles in nematode biology, influencing cellular membranes, energy storage and/or signalling.

View Article and Find Full Text PDF

One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.

View Article and Find Full Text PDF

Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!