We experimentally demonstrated, for, it is believed, the first time, high-capacity polarization- and mode-division multiplexing free-space optical transmission with adequate strong turbulence resiliency. A compact spatial light modulator-based polarization multiplexing multi-plane light conversion module was employed to emulate strong turbulent links. By employing advanced successive interference cancellation multiple-input multiple-output decoder and redundant receive channels, the strong turbulence resiliency was significantly improved in a mode-division multiplexing system. As a result, we achieved a record-high line rate of 689.2 Gbit/s, channel number of 10, and net spectral efficiency of 13.9 bit/(s Hz) in a single-wavelength mode-division multiplexing system with strong turbulence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.495334 | DOI Listing |
Sci Rep
January 2025
THz-Photonics Group, Institut für Hochfrequenztechnik, Technische Universität Braunschweig, 38106, Braunschweig, Germany.
Space division multiplexing (SDM) with Hermite Gaussian (HG) modes, for instance, can significantly boost the transmission link capacity. However, SDM is not suitable in existing single mode fiber networks, and in long-distance wireless, microwave, THz or optical links, the far-field beam distribution may present a problem. Recently it has been demonstrated, that time domain HG modes can be employed to enhance the link capacity.
View Article and Find Full Text PDFNanophotonics
September 2024
Ningbo University, Ningbo, China.
Mode converters (MCs) play an essential role in mode-division multiplexing (MDM) systems. Numerous schemes have been developed on the silicon-on-insulator (SOI) platform, yet most of them focus solely on the conversion of fundamental mode to one or two specific higher-order modes. In this study, we introduce a hybrid shape optimization (HSO) method that combines particle swarm optimization (PSO) with adjoint methods to optimize the shape of the S-bend waveguide, facilitating the design of arbitrary-order MCs featuring compactness and high performance.
View Article and Find Full Text PDFNanophotonics
September 2024
Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Saclay, 91120 Palaiseau, France.
Multimode silicon photonics, leveraging mode-division multiplexing technologies, offers significant potential to increase capacity of large-scale multiprocessing systems for on-chip optical interconnects. These technologies have implications not only for telecom and datacom applications, but also for cutting-edge fields such as quantum and nonlinear photonics. Thus, the development of compact, low-loss and low-crosstalk multimode devices, in particular mode exchangers, is crucial for effective on-chip mode manipulation.
View Article and Find Full Text PDFNanophotonics
August 2024
Key Laboratory of Optoelectronic Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, China.
Silicon-based optical switches are integral to on-chip optical interconnects, and mode-division multiplexing (MDM) technology has enabled modes to function as carriers in routing, further boosting optical switches' link capacity. However, traditional multimode optical switches, which typically use Mach-Zehnder interferometer (MZI) structures and mode (de)multiplexers, are complex and occupy significant physical space. In this paper, we propose and experimentally demonstrate a novel demultiplexing-free dual-mode 3 × 3 thermal-optical switch based on micro-rings (MRs) and mode exchangers (MEs).
View Article and Find Full Text PDFBroadband high-order mode converters play a fundamental and crucial role in mode division multiplexing systems. Unfortunately, there have been no reports on achieving broadband mutual conversion between high-order modes using long-period fiber gratings (LPFGs). In this paper, based on the concept of "stepwise" progressive conversion (SPC), a double-sided exposure fabrication method of LPFGs to achieve broadband mutual conversion between high-order modes is proposed and demonstrated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!