Optical chaos communication encounters difficulty in high-speed transmission due to the challenge of realizing wideband chaos synchronization. Here, we experimentally demonstrate a wideband chaos synchronization using discrete-mode semiconductor lasers (DMLs) in a master-slave open-loop configuration. The DML can generate wideband chaos with a 10-dB bandwidth of 30 GHz under simple external mirror feedback. By injecting the wideband chaos into a slave DML, an injection-locking chaos synchronization with synchronization coefficient of 0.888 is realized. A parameter range with frequency detuning of -18.75 GHz to approximately 1.25 GHz under strong injection is identified for yielding the wideband synchronization. In addition, we find it more susceptible to achieve the wideband synchronization using the slave DML with lower bias current and smaller relaxation oscillation frequency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.487178 | DOI Listing |
Chaotic optical communication encrypts transmitted signals through physical noise; this ensures high security while causing a certain decrease in the signal-to-noise ratio (SNR). Thus, it is necessary to analyze the SNR degradation of decrypted signals after chaotic encryption and the minimum requirements for the SNR of the fiber channel to meet the required bit error rate (BER) performance. Accordingly, an SNR model of decrypted signals for optoelectronic feedback-based chaotic optical communication systems is proposed.
View Article and Find Full Text PDFOptical chaos communication encounters difficulty in high-speed transmission due to the challenge of realizing wideband chaos synchronization. Here, we experimentally demonstrate a wideband chaos synchronization using discrete-mode semiconductor lasers (DMLs) in a master-slave open-loop configuration. The DML can generate wideband chaos with a 10-dB bandwidth of 30 GHz under simple external mirror feedback.
View Article and Find Full Text PDFIn this Letter, we experimentally demonstrate a method to improve the bandwidth and flatness of chaos from a laser diode using the optical injection of a frequency comb. Our results show that the injection of an optical frequency comb into a laser diode extends the area of chaotic dynamics to much broader injection parameters (injected power and detuning frequency). The increased number of injected lines and the injected comb spacing are used to control and significantly improve the chaos properties.
View Article and Find Full Text PDFWe propose and numerically demonstrate wideband and high-dimensional chaos signal generation based on optically pumped spin-polarized vertical-cavity surface-emitting lasers (spin-VCSELs). Here, we focus on the chaotic characteristics of spin-VCSELs under two scenarios: one is a spin-VCSEL with optical feedback and the other is optical heterodyning the outputs of two free-running spin-VCSELs. Specifically, we systematically investigate the influence of some key parameters on the chaotic properties, i.
View Article and Find Full Text PDFChaotic optical communications can provide a high level of security in data transmission. High-speed chaotic optical communications have hardly been implemented so far limited by the bandwidth of chaotic signals and the difficulties of wideband chaos synchronization. Here, we experimentally demonstrate all-optical wideband chaos synchronization and communications based on mutual injection of semiconductor lasers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!