A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhancing Faraday and Kerr rotations based on the toroidal dipole mode in an all-dielectric magneto-optical metasurface. | LitMetric

The magneto-optical Faraday and Kerr effects are widely used in modern optical devices. In this Letter, we propose an all-dielectric metasurface composed of perforated magneto-optical thin films, which can support the highly confined toroidal dipole resonance and provide full overlap between the localized electromagnetic field and the thin film, and consequently enhance the magneto-optical effects to an unprecedented degree. The numerical results based on the finite element method show that the Faraday and Kerr rotations can reach -13.59° and 8.19° in the vicinity of toroidal dipole resonance, which are 21.2 and 32.8 times stronger than those in the equivalent thickness of thin films. In addition, we design an environment refractive index sensor based on the resonantly enhanced Faraday and Kerr rotations, with sensitivities of 62.96 nm/RIU and 73.16 nm/RIU, and the corresponding maximum figures of merit 132.22°/RIU and 429.45°/RIU, respectively. This work provides a new, to the best of our knowledge, strategy for enhancing the magneto-optical effects at nanoscale, and paves the way for the research and development of magneto-optical metadevices such as sensors, memories, and circuits.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.492913DOI Listing

Publication Analysis

Top Keywords

faraday kerr
16
kerr rotations
12
toroidal dipole
12
thin films
8
dipole resonance
8
magneto-optical effects
8
magneto-optical
6
enhancing faraday
4
kerr
4
rotations based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!