Uveal melanoma (UM) is the most common primary intraocular malignancy in adults. Owing to a lack of effective treatments, patients with metastatic disease have a median survival time of 6-12 months. We recently demonstrated that the Survival Associated Mitochondrial Melanoma Specific Oncogenic Non-coding RNA is essential for UM cell survival and that antisense oligonucleotide (ASO)-mediated silencing of impaired cell viability and tumor growth and . By screening a library of 2911 clinical stage compounds, we identified the mammalian target of rapamycin (mTOR) inhibitor GDC-0349 to synergize with inhibition in UM. Mechanistic studies revealed that mTOR inhibition enhanced uptake and reduced lysosomal accumulation of lipid complexed ASOs, improving knockdown and further decreasing UM cell viability. We found mTOR inhibition to also enhance target knockdown in other cancer cell lines as well as normal cells when combined with lipid nanoparticle complexed or encapsulated ASOs or small interfering RNAs (siRNAs). Our results are relevant to nucleic acid treatment in general and highlight the potential of mTOR inhibition to enhance ASO and siRNA-mediated target knockdown.

Download full-text PDF

Source
http://dx.doi.org/10.1089/nat.2023.0008DOI Listing

Publication Analysis

Top Keywords

mtor inhibition
16
uveal melanoma
8
cell viability
8
inhibition enhance
8
target knockdown
8
mtor
5
inhibition enhances
4
enhances delivery
4
delivery activity
4
activity antisense
4

Similar Publications

Purpose: Less than 5% of GI stromal tumors (GISTs) are driven by the loss of the succinate dehydrogenase (SDH) complex, resulting in a pervasive DNA hypermethylation pattern that leads to unique clinical features. Advanced SDH-deficient GISTs are usually treated with the same therapies targeting KIT and PDGFRA receptors as those used in metastatic GIST. However, these treatments display less activity in the absence of alternative therapeutic options.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation, airway obstruction, and lung damage, often triggered by cigarette smoke. Dysregulated autophagy and inflammation are key contributors to its progression. Although double-stranded RNA-binding protein Staufen homolog 1 (STAU1), a multifunctional protein primarily involved in mRNA transport and localization, is identified as a potential biomarker, its role in COPD pathogenesis remains unclear.

View Article and Find Full Text PDF

SP1 activates AKT3 to facilitate the development of diabetic nephropathy.

J Endocrinol Invest

January 2025

Department of Endocrinology, Nanshi Hospital of Nanyang, No. 130, West Zhongzhou Road, Nanyang, 473065, China.

Background: Diabetic nephropathy (DN) is a severe complication of diabetes mellitus and has the complex pathogenesis. The previous study reported that protein kinase Bγ (AKT3) was involved in DN progression. Our aim was to explore the detailed mechanisms of AKT3 in DN development.

View Article and Find Full Text PDF

Metastasis is the trigger of death in anaplastic thyroid cancer (ATC) patients, yet the specific mechanisms at play are still largely enigmatic. While the involvement of LARP1 in the metastatic process of various cancers has been documented, there is a noticeable gap in the literature regarding its potential influence on ATC metastasis. Molecular studies probed LARP1 expression within ATC cells, with subsequent in vitro experiments examining the effects of LARP1 on ATC cell metastasis and the mTOR signaling cascade.

View Article and Find Full Text PDF

Developing Topics.

Alzheimers Dement

December 2024

University of Miami Miller School of Medicine, Center for Therapeutic Innovation, Miami, FL, USA.

Background: Rapamycin is currently in clinical trials for AD, yet numerous studies have suggested that rapamycin inhibits mTORC2 as well as mTORC1, which could be detrimental for AD pathology. Brain insulin resistance is a known aspect of AD pathology and mTORC2 inhibition reduces AKT phosphorylation, which is a main mediator of cellular insulin signaling, perpetuating insulin resistance and further worsening brain glucose metabolism. Here, we show that rapamycin prevents insulin-induced AKT phosphorylation in human neurons and explore the differential effects of mTORC1 and mTORC2 on neuronal insulin sensitivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!