Importance: Military deployment involves significant risk for life-threatening experiences that can lead to posttraumatic stress disorder (PTSD). Accurate predeployment prediction of PTSD risk may facilitate the development of targeted intervention strategies to enhance resilience.
Objective: To develop and validate a machine learning (ML) model to predict postdeployment PTSD.
Design, Setting, And Participants: This diagnostic/prognostic study included 4771 soldiers from 3 US Army brigade combat teams who completed assessments between January 9, 2012, and May 1, 2014. Predeployment assessments occurred 1 to 2 months before deployment to Afghanistan, and follow-up assessments occurred approximately 3 and 9 months post deployment. Machine learning models to predict postdeployment PTSD were developed in the first 2 recruited cohorts using as many as 801 predeployment predictors from comprehensive self-report assessments. In the development phase, cross-validated performance metrics and predictor parsimony were considered to select an optimal model. Next, the selected model's performance was evaluated with area under the receiver operating characteristics curve and expected calibration error in a temporally and geographically distinct cohort. Data analyses were performed from August 1 to November 30, 2022.
Main Outcomes And Measures: Posttraumatic stress disorder diagnosis was assessed by clinically calibrated self-report measures. Participants were weighted in all analyses to address potential biases related to cohort selection and follow-up nonresponse.
Results: This study included 4771 participants (mean [SD] age, 26.9 [6.2] years), 4440 (94.7%) of whom were men. In terms of race and ethnicity, 144 participants (2.8%) identified as American Indian or Alaska Native, 242 (4.8%) as Asian, 556 (13.3%) as Black or African American, 885 (18.3%) as Hispanic, 106 (2.1%) as Native Hawaiian or other Pacific Islander, 3474 (72.2%) as White, and 430 (8.9%) as other or unknown race or ethnicity; participants could identify as of more than 1 race or ethnicity. A total of 746 participants (15.4%) met PTSD criteria post deployment. In the development phase, models had comparable performance (log loss range, 0.372-0.375; area under the curve range, 0.75-0.76). A gradient-boosting machine with 58 core predictors was selected over an elastic net with 196 predictors and a stacked ensemble of ML models with 801 predictors. In the independent test cohort, the gradient-boosting machine had an area under the curve of 0.74 (95% CI, 0.71-0.77) and low expected calibration error of 0.032 (95% CI, 0.020-0.046). Approximately one-third of participants with the highest risk accounted for 62.4% (95% CI, 56.5%-67.9%) of the PTSD cases. Core predictors cut across 17 distinct domains: stressful experiences, social network, substance use, childhood or adolescence, unit experiences, health, injuries, irritability or anger, personality, emotional problems, resilience, treatment, anxiety, attention or concentration, family history, mood, and religion.
Conclusions And Relevance: In this diagnostic/prognostic study of US Army soldiers, an ML model was developed to predict postdeployment PTSD risk with self-reported information collected before deployment. The optimal model showed good performance in a temporally and geographically distinct validation sample. These results indicate that predeployment stratification of PTSD risk is feasible and may facilitate the development of targeted prevention and early intervention strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10314304 | PMC |
http://dx.doi.org/10.1001/jamanetworkopen.2023.21273 | DOI Listing |
Comput Methods Biomech Biomed Engin
January 2025
Department of Gastroenterolgy, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China.
The global rise in Crohn's Disease (CD) incidence has intensified diagnostic challenges. This study identified circadian rhythm-related biomarkers for CD using datasets from the GEO database. Differentially expressed genes underwent Weighted Gene Co-Expression Network Analysis, with 49 hub genes intersected from GeneCards data.
View Article and Find Full Text PDFArch Pathol Lab Med
January 2025
the Department of Pathology, The Ohio State University, Columbus (Parwani).
Context.—: Generative artificial intelligence (AI) has emerged as a transformative force in various fields, including anatomic pathology, where it offers the potential to significantly enhance diagnostic accuracy, workflow efficiency, and research capabilities.
Objective.
Anal Sci
January 2025
Department of Analytical Chemistry, Faculty of Pharmacy, Near East University, TRNC, Mersin 10, 99138, Nicosia, Turkey.
In this research, a green approach utilizing deep eutectic solvent liquid-liquid microextraction is combined with smartphone digital image colorimetry for the determination of boron in nut samples. A smartphone camera was used to capture the image of the analyte extract located in a custom-made colorimetric box. Using ImageJ software, the images were split into RGB channels, with the green channel identified as the optimum.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
LEESU, Ecole des Ponts Paris Tech, UPEC, AgroParisTech, F-77455 Marne-la-Vallée, Paris, France.
Urban reservoirs are frequently exposed to impacts from high population density, polluting activities, and the absence of environmental control measures and monitoring. In this study, we investigated the use of satellite imagery to assess restoration measures and support decision-making in a hypereutrophic urban reservoir. Since 2016, Lake Pampulha (Brazil) has undergone restoration measures, including the application of Phoslock®, to mitigate its poor water quality conditions.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Thyroid Breast Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
Objective: Despite the identification of various prognostic factors for anaplastic thyroid carcinoma (ATC) patients over the years, a precise prognostic tool for these patients is still lacking. This study aimed to develop and validate a prognostic model for predicting survival outcomes for ATC patients using random survival forests (RSF), a machine learning algorithm.
Methods: A total of 1222 ATC patients were extracted from the Surveillance, Epidemiology, and End Results (SEER) database and randomly divided into a training set of 855 patients and a validation set of 367 patients.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!