The myrtle rust (MR), caused by Austropuccinia psidii, is a worldwide threat to the cultivated and wild Myrtaceae. Originally from the neotropics, it has spread to North America, Africa, and Asia and has reached geographically isolated areas in the Pacific and Australasia. It is attacking native species in those new ranges and is still spreading and causing great concern for the damage caused to endemic Myrtaceae, and to the environment. Classical biological control is regarded as the most sustainable management option for mitigating such biological invasions. However, there are no examples of introductions of host-specific co-evolved natural enemies of plant pathogens, from their native range, as a management strategy for plant pathogens. In order to explore this neglected approach, a survey of potential fungal natural enemies of A. psidii was initiated recently in the state of Minas Gerais (Brazil). Several purported mycoparasites have been collected from A. Psidii pustules formed on myrtaceous hosts. This included some isolates of dematiaceous fungi recognized as having a Cladosporium-like morphology. Here we present the results of the investigation aimed at elucidating their identity through a polyphasic taxonomic approach. Besides morphological and cultural features, molecular analyses using sequences of translation elongation factor 1-α (EF1) and actin (ACT) were performed. The combination of data generated is presented herein and placed all Cladosporium-like isolates in six species of Cladosporium, namely, Cladosporium angulosum, C. anthropophilum, C. bambusicola, C. benschii, C. guizhouense, and C. macadamiae. None of these have ever been recorded in association with A. psidii. Now, with the identification of these isolates at hand, an evaluation of biocontrol potential of these fungi will be initiated. In contrast with the ready finding of fungicolous (possibly mycoparasitic) fungi on MR in this study, no evidence of those was recorded from Australasia until now.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10484887PMC
http://dx.doi.org/10.1007/s42770-023-01047-6DOI Listing

Publication Analysis

Top Keywords

myrtle rust
8
austropuccinia psidii
8
natural enemies
8
plant pathogens
8
psidii
5
surveying antagonistic
4
fungi
4
antagonistic fungi
4
fungi myrtle
4
rust austropuccinia
4

Similar Publications

Myrtle rust is a plant disease caused through infection by the fungus and was first detected in Australia in 2010. The disease has spread through New South Wales, Victoria, Queensland, the Northern Territory, and Tasmania. In this short timeframe, myrtle rust has had a devastating impact on many native species in the family Myrtaceae, including several rainforest species that are now at risk of extinction.

View Article and Find Full Text PDF

Myrtaceae are a large family of woody plants, including hundreds that are currently under threat from the global spread of a fungal pathogen, Austropuccinia psidii (G. Winter) Beenken, which causes myrtle rust. A reference genome for the Australian native rainforest tree Rhodamnia argentea Benth.

View Article and Find Full Text PDF

is the causal agent of myrtle rust in over 480 species within the family Myrtaceae. Lineages of are structured by their hosts in the native range, and some have success in infecting newly encountered hosts. For example, the pandemic biotype has spread beyond South America, and proliferation of other lineages is an additional risk to biodiversity and industries.

View Article and Find Full Text PDF

is the causal pathogen of myrtle rust disease of Myrtaceae. To gain understanding of the initial infection process, gene expression in germinating urediniospores and in -inoculated leaves were investigated via analyses of RNA sequencing samples taken 24 and 48 h postinoculation (hpi). Principal component analyses of transformed transcript count data revealed differential gene expression between the uninoculated control plants that correlated with the three plant leaf resistance phenotypes (immunity, hypersensitive response, and susceptibility).

View Article and Find Full Text PDF

, first congeneric with the myrtle rust pathogen .

Mycologia

April 2024

Departamento de Biologia Celular-Biologia Microbiana, Universidade de Brasília, Brasília 70910-900, Brazil.

In 1895 and 2001, rust fungi affecting trees (Chrysobalanchaceae) in Brazil were described as by Hennings in the state of Goiás and as by Ferreira et al. in the state of Amazonas, respectively. Recently, a rust fungus collected close to the Amazonian type location sharing symptoms with the former two species was subjected to morphological examinations and molecular phylogenetic analyses using 28S nuc rDNA (ITS2-28S) and cytochrome oxidase subunit III (CO3) gene sequences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!