AI Article Synopsis

  • Pseudoephedrine (PSE), a common ingredient in cold medications, is widely used by pregnant women to treat colds, with one in four expecting mothers using it.
  • A study was conducted on pregnant rats to analyze the impact of various doses of PSE on fetal long bone development through measurements of weights, heights, and bone ossification after cesarean delivery.
  • Results showed a decrease in morphometric data, ossification rates, and calcium levels in bones with increasing PSE doses, indicating that PSE usage during pregnancy negatively affects fetal bone growth.

Article Abstract

Pseudoephedrine (PSE) is an agent that is contained in common cold medications. The agent, which is used to treat cold and cough, is the fourth most prescribed drug group in some countries. During pregnancy, expectant mothers use PSE for colds and other reasons. One out of every four expectant mothers use PSE alone or in combination with other medicines for various reasons. This study was aimed to investigate effects of PSE on long bones development in rat during fetal growth. Pregnant rats were divided into five groups: control and four experimental groups (25 mg/kg, 50 mg/kg, 100 mg/kg, 200 mg/kg PSE). Between 1 and 20 days of pregnancy, PSE was given to them by gavage. Weights and heights of fetuses isolated by cesarean on the 21st day were measured. Ossification of femur and humerus was examined by three different methods mentioned earlier. Depending on the dose increase, all morphometric data, ossification rate and bone length of the fetuses were decreased. Besides, it was determined that the amount of Calcium in the bone tissue decreased in the analyzes made with SEM-EDX Analysis. The data obtained from this study reveal that the use of PSE during pregnancy disrupts the existing balance in the bone and negatively affects ossification due to the dose increase. In conclusion, we present descriptive and novel data on the effects of PSE use during pregnancy on the bone development of rat fetal long bones.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12565-023-00733-7DOI Listing

Publication Analysis

Top Keywords

rat fetal
12
bone development
8
three methods
8
pse
8
expectant mothers
8
mothers pse
8
effects pse
8
long bones
8
development rat
8
dose increase
8

Similar Publications

Exosomes derived from hUC-MSCs exhibit ameliorative efficacy upon previous cesarean scar defect via orchestrating β-TrCP/CHK1 axis.

Sci Rep

January 2025

Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Blood Ecology and Biointelligence, Jinan Key Laboratory of Medical Cell Bioengineering, Cardio- cerebrovascular Disease Hospital of Jinan, The Fourth People's Hospital of Jinan, The Teaching Hospital of Shandong Second Medical University, 50 Shifan Road, Tianqiao District, Jinan, 250031, Shandong, China.

Previous cesarean scar defect (PCSD), also acknowledged as the myometrium of uterus defects, which commonly results in myometrial discontinuity between the uterine and cervical cavity. Current literatures have indicated the efficacy of MSCs and MSC-derived exosomes (MSC-Exos) for diverse refractory disease administration, yet the feasibility of MSC-Exos for PCSD treatment is largely obscure. In this study, we took advantage of the in vivo myofibrotic model for mimicking the typical manifestation of PCSD and the assessment of fertility.

View Article and Find Full Text PDF

Objectives: Maternal protein malnutrition alters brain functioning, impairing fetal development. Physical exercise during gestation benefits the fetal organism from maternal adaptive changes that may be neuroprotective. This study evaluated the effect of a low-protein diet associated with maternal voluntary physical activity (VPA) on rats' behavioral and brain electrophysiological parameters in the mother-pup dyad.

View Article and Find Full Text PDF

Objective: Anxiety and depression-like symptoms occur in the early stages of Alzheimer's disease. Hippocampal Sirtuin 1 (SIRT1) signaling mediates anxiety- and depression-like behavior. Exercise training improves anxiety and depression-like behavior in various disease models, such as the rat chronic restraint stress model, rat model of posttraumatic stress disorder, and rat model of fetal alcohol spectrum disorders.

View Article and Find Full Text PDF

Background: We sought to determine whether transamniotic stem cell therapy (TRASCET) could be a viable alternative for the fetal administration of genetically modified hematopoietic stem cells (HSCs) carrying a human hemoglobin subunit beta gene (hHBB) in a healthy syngeneic rat model.

Methods: Time-dated pregnant Lewis dams underwent volume-matched intra-amniotic injections in all their fetuses (n = 61) of a suspension of donor HSCs genetically modified with either both a hHBB gene and a firefly luciferase reporter gene (n = 42) or the firefly luciferase reporter gene alone to control for HBB-derived protein interspecies homology (n = 19) on gestational day 17 (E17; term = E21). Donor HSCs consisted of syngeneic cells phenotyped by flow cytometry with successful hHBB transduction confirmed by ELISA prior to administration in vivo.

View Article and Find Full Text PDF

Prenatal toxicity of L-mimosine in Wistar rats.

Toxicon

December 2024

Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, S.P., Brazil; Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (ICAQF-UNIFESP), Diadema, S.P., Brazil. Electronic address:

L-Mimosine is the main active component of the plant Leucaena leucocephala. Due to its metal-chelating mechanism, it interacts with various metabolic pathways in living organisms, making it a potential pharmacological target, although it also leads to toxicity. The present study aimed to investigate the transplacental passage of L-mimosine and its effects on embryofetal development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!