Alternatives to zinc oxide in pig production.

Pol J Vet Sci

Department of Infectious and Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland.

Published: June 2023

AI Article Synopsis

Article Abstract

Zinc oxide (ZnO) has been applied for many years in the production of pigs to reduce the number of diarrhoea in weaned piglets. In June 2022, the European Union banned the use of zinc oxide (ZnO) in pig feed. According to scientific reports, the may reason was the accumulation of this microelement in the environment of pig production. It has been shown that frequent application of ZnO can lead to increased antibiotic resistance in pathogenic swine microflora. The main alternatives to ZnO are probiotics, prebiotics, organic acids, essential oils, and liquid feeding systems. Alternatives to ZnO can be successfully used in pig production to reduce the number of diarrhoea among piglets during the postweaning period. Additional reports indicated that bacteriophage supplementation has a positive effect on the health of pigs. The article provides an overview of current ZnO substitutes that can be used in pig farming.

Download full-text PDF

Source
http://dx.doi.org/10.24425/pjvs.2023.145033DOI Listing

Publication Analysis

Top Keywords

zinc oxide
12
pig production
12
oxide zno
8
reduce number
8
number diarrhoea
8
zno pig
8
alternatives zno
8
zno
6
pig
5
alternatives zinc
4

Similar Publications

Schistosomiasis, caused by Schistosoma worms, is a major neglected tropical disease in Africa, this disease is ranked as second after malaria. Nanotechnology is important for treating schistosomiasis while minimizing chemotherapy side effects. The current investigate aimed to assess the effectiveness of biosynthesized zinc oxide nanoparticles (ZnO NPs), which were used for the first time in an attempt to find alternative treatment for schistosomiasis and synthesized by Origanum majorana, and to compare them with praziquantel (PZQ), the only chemical treatment approved by the World Health Organization.

View Article and Find Full Text PDF

Objectives: This study aimed to evaluate and compare the antibacterial properties and optical characteristics of clear orthodontic aligners coated with zinc oxide (ZnO) and magnesium oxide (MgO) nanoparticles.

Materials And Methods: In this experimental laboratory study, polyethylene terephthalate glycol (PETG) aligner samples were coated with nanoparticles of ZnO, MgO and a combination of both (ZnO + MgO). The surface coatings were analysed before and after stability testing using field emission scanning electron microscopy (FESEM).

View Article and Find Full Text PDF

The integration of dual-mesoporous structures, the construction of heterojunctions, and the incorporation of highly concentrated oxygen vacancies are pivotal for advancing metal oxide-based gas sensors. Nonetheless, achieving an optimal design that simultaneously combines mesoporous structures, precise heterojunction modulation, and controlled oxygen vacancies through a one-step process remains challenging. This study proposes an innovative method for fabricating zinc stannate semiconductors featuring dual-mesoporous structures and tunable oxygen vacancies via a direct solution precursor plasma spray technique.

View Article and Find Full Text PDF

A cytochrome repressed by a MarR family regulator confers resistance to metals, nitric oxide, sulfide, and cyanide in .

Appl Environ Microbiol

January 2025

Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.

Unlabelled: is a ubiquitous environmental pathogen. Despite its remarkable adaptability, little is known about the mechanisms of stress resistance in this bacterium. Here, in a screen for iron-susceptible transposon mutants, we identified a cytochrome that protects against multiple stresses.

View Article and Find Full Text PDF

Agricultural growers worldwide face significant challenges in promoting plant growth. This research introduces a green strategy utilizing nanomaterials to enhance crop production. While high concentrations of nanomaterials are known to be hazardous to plants, this study demonstrates that low doses of biologically synthesized zinc oxide nanoparticles (ZnO NPs) can serve as an effective regulatory tool to boost plant growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!