Laparoscopes can suffer from fogging and contamination difficulties, resulting in a reduced field of view during surgery. A series of diamond-like carbon films, doped with SiO, were produced by pulsed laser deposition for evaluation as biocompatible, antifogging coatings. DLC films doped with SiO demonstrated hydrophilic properties with water contact angles under 40°. Samples subjected to plasma cleaning had improved contact angle results, with values under 5°. Doping the DLC films with SiO led to an average 40% decrease in modulus and 60% decrease in hardness. Hardness of the doped films, 12.0 - 13.2 GPa, was greater than that of the uncoated fused silica substrate, 9.2 GPa. The biocompatibility was assessed through CellTiter-Glo assays, with the films demonstrating statistically similar levels of cell viability when compared to the control media. The absence of ATP released by blood platelets in contact with the DLC coatings suggests hemocompatibility. The SiO doped films displayed improved transparency levels in comparison to undoped films, achieving up to an average of 80% transmission over the visible spectrum and an attenuation coefficient of 1.1 × 10 cm at the 450 nm wavelength. The SiO doped DLC films show promise as a method of fog prevention for laparoscopes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10306171 | PMC |
http://dx.doi.org/10.1016/j.apsusc.2023.157606 | DOI Listing |
Heliyon
November 2024
Faculty of Physics, Shahrood University of Technology, 3619995161, Shahrood, Iran.
This study evaluates the deposition of diamond-like carbon (DLC) films with copper impurities on a glass substrate using simultaneous direct current (DC) and radio frequency (RF) magnetron sputtering. The structural, optical, electrical, and mechanical properties, as well as the surface topography of the films, were investigated under various DC power levels using Raman spectroscopy, ellipsometry, UV-VIS, I-V measurements, nanoindentation, AFM, and FESEM. Results indicate that increasing the DC power to the graphite target from 60 to 120 , while maintaining a constant 10 of RF power to the copper target, enhances the optical absorption coefficient of the films and increases the optical bandgap from 0.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Lodz, Jana Muszyńskiego 1, 90-001 Lodz, Poland.
The potential of diamond-like carbon coatings in medicine can be increased by doping them with various elements. Such modifications especially affect the biological properties of the synthetized films. In the following research, phosphorus was introduced into the carbon matrix by means of the chemical vapor deposition technique and using an organic precursor.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2024
Center for Nano and Micro Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China.
ACS Appl Mater Interfaces
November 2024
Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
Achieving fast and long-lasting superlubricity in two-dimensional (2D) materials under high-stress conditions is challenging due to their susceptibility to structural deformations, limited load-bearing capacity, oxidation, and thermal degradation. This study introduces an innovative strategy by utilizing a composite of MXene and H-DLC, where, under high-stress conditions, H-DLC acts as a preferential energy-absorbing phase. MXene serves as a template to rapidly and continuously transform the absorbed energy into graphene-like structures, forming an in situ heterogeneous MXene/graphene-like interface.
View Article and Find Full Text PDFHeliyon
October 2024
School of Intelligent Manufacturing Engineering, Harbin Huade University, Harbin, 150025, Heilongjiang, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!