Mutations in spike (S) protein epitopes allow SARS-CoV-2 variants to evade antibody responses induced by infection and/or vaccination. In contrast, mutations in glycosylation sites across SARS-CoV-2 variants are very rare, making glycans a potential robust target for developing antivirals. However, this target has not been adequately exploited for SARS-CoV-2, mostly due to intrinsically weak monovalent protein-glycan interactions. We hypothesize that polyvalent nano-lectins with flexibly linked carbohydrate recognition domains (CRDs) can adjust their relative positions and bind multivalently to S protein glycans, potentially exerting potent antiviral activity. Herein, we displayed the CRDs of DC-SIGN, a dendritic cell lectin known to bind to diverse viruses, polyvalently onto 13 nm gold nanoparticles (named G13-CRD). G13-CRD bound strongly and specifically to target glycan-coated quantum dots with sub-nM . Moreover, G13-CRD neutralized particles pseudotyped with the S proteins of Wuhan Hu-1, B.1, Delta variant and Omicron subvariant BA.1 with low nM EC. In contrast, natural tetrameric DC-SIGN and its G13 conjugate were ineffective. Further, G13-CRD potently inhibited authentic SARS-CoV-2 B.1 and BA.1, with <10 pM and <10 nM EC, respectively. These results identify G13-CRD as the 1st polyvalent nano-lectin with broad activity against SARS-CoV-2 variants that merits further exploration as a novel approach to antiviral therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10302749PMC
http://dx.doi.org/10.1021/jacsau.3c00163DOI Listing

Publication Analysis

Top Keywords

spike protein
8
sars-cov-2 variants
8
sars-cov-2
5
polyvalent nano-lectin
4
nano-lectin potently
4
potently neutralizes
4
neutralizes sars-cov-2
4
sars-cov-2 targeting
4
targeting glycans
4
glycans viral
4

Similar Publications

Adjuvants are crucial for maintaining specific, protective, and long-lasting immunity. Here, we aimed to evaluate the antigenic and immunogenic activity of a recombinant form of the S1 domain of the Spike protein, associated with biogenic silver nanoparticles (bio-AgNP) and Alhydrogel as an alternative and conventional adjuvant, respectively, for a SARS-CoV-2 subunit vaccine. We produced and evaluated the antigenicity of the recombinant S1 (rS1) protein by testing its recognition by antibodies present in SARS-CoV-2 positive human serum.

View Article and Find Full Text PDF

A comprehensive review of current insights into the virulence factors of SARS-CoV-2.

J Virol

January 2025

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.

The evolution of SARS-CoV-2 pathogenicity has been a major focus of attention. However, the determinants of pathogenicity are still unclear. Various hypotheses have attempted to elucidate the mechanisms underlying the evolution of viral pathogenicity, but a definitive conclusion has yet to be reached.

View Article and Find Full Text PDF

Background: The emergence of novel SARS-CoV-2 variants challenges immunity, particularly among immunocompromised kidney transplant recipients (KTRs). To address this, vaccines have been adjusted to circulating variants. Despite intensive vaccination efforts, SARS-CoV-2 infections surged among KTRs during the Omicron wave, enabling a direct comparison of variant-specific immunity following-vaccination against Omicron BA.

View Article and Find Full Text PDF

Background: Drivers of COVID-19 severity are multifactorial and include multidimensional and potentially interacting factors encompassing viral determinants and host-related factors (i.e., demographics, pre-existing conditions and/or genetics), thus complicating the prediction of clinical outcomes for different severe acute respiratory syndrome coronavirus (SARS-CoV-2) variants.

View Article and Find Full Text PDF

T cell immune evasion by SARS-CoV-2 JN.1 escapees targeting two cytotoxic T cell epitope hotspots.

Nat Immunol

January 2025

National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.

Although antibody escape is observed in emerging severe acute respiratory syndrome coronavirus 2 variants, T cell escape, especially after the global circulation of BA.2.86/JN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!