Frequent observations of surface water at fine spatial scales will provide critical data to support the management of aquatic habitat, flood risk and water quality. Sentinel-1 and Sentinel-2 satellites can provide such observations, but algorithms are still needed that perform well across diverse climate and vegetation conditions. We developed surface inundation algorithms for Sentinel-1 and Sentinel-2, respectively, at 12 sites across the conterminous United States (CONUS), covering a total of >536,000 km and representing diverse hydrologic and vegetation landscapes. Each scene in the 5-year (2017-2021) time series was classified into open water, vegetated water, and non-water at 20 m resolution using variables from Sentinel-1 and Sentinel-2, as well as variables derived from topographic and weather datasets. The Sentinel-1 algorithm was developed distinct from the Sentinel-2 model to explore if and where the two time series could potentially be integrated into a single high-frequency time series. Within each model, open water and vegetated water (vegetated palustrine, lacustrine, and riverine wetlands) classes were mapped. The models were validated using imagery from WorldView and PlanetScope. Classification accuracy for open water was high across the 5-year period, with an omission and commission error of only 3.1% and 0.9% for the Sentinel-1 algorithm and 3.1% and 0.5% for the Sentinel-2 algorithm, respectively. Vegetated water accuracy was lower, as expected given that the class represents mixed pixels. The Sentinel-2 algorithm showed higher accuracy (10.7% omission and 7.9% commission error) relative to the Sentinel-1 algorithm (28.4% omission and 16.0% commission error). Patterns over time in the proportion of area mapped as open or vegetated water by the Sentinel-1 and Sentinel-2 algorithms were charted and correlated for a subset of all 12 sites. Our results showed that the Sentinel-1 and Sentinel-2 algorithm open water time series can be integrated at all 12 sites to improve the temporal resolution, but sensor-specific differences, such as sensitivity to vegetation structure versus pixel color, complicate the data integration for mixed-pixel, vegetated water. The methods developed here provide inundation at 5-day (Sentinel-2 algorithm) and 12-day (Sentinel-1 algorithm) time steps to improve our understanding of the short- and long-term response of surface water to climate and land use drivers in different ecoregions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10303792 | PMC |
http://dx.doi.org/10.1016/j.rse.2023.113498 | DOI Listing |
Sensors (Basel)
January 2025
School of Oceanography and Spatial Information, China University of Petroleum East China-Qingdao Campus, Qingdao 266580, China.
Salt marsh vegetation in the Yellow River Delta, including (), (), and (), is essential for the stability of wetland ecosystems. In recent years, salt marsh vegetation has experienced severe degradation, which is primarily due to invasive species and human activities. Therefore, the accurate monitoring of the spatial distribution of these vegetation types is critical for the ecological protection and restoration of the Yellow River Delta.
View Article and Find Full Text PDFSoil moisture is a key parameter for the exchange of substance and energy at the land-air interface, timely and accurate acquisition of soil moisture is of great significance for drought monitoring, water resource management, and crop yield estimation. Synthetic aperture radar (SAR) is sensitive to soil moisture, but the effects of vegetation on SAR signals poses challenges for soil moisture retrieval in areas covered with vegetation. In this study, based on Sentinel-1 SAR and Sentinel-2 optical remote sensing data, a coupling approach was employed to retrieval surface soil moisture over dense vegetated areas.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Departamento de Geografía, Facultad de Ciencias, Universidad de la República, Montevideo 4225, Uruguay.
Recent advancements in Earth Observation sensors, improved accessibility to imagery and the development of corresponding processing tools have significantly empowered researchers to extract insights from Multisource Remote Sensing. This study aims to use these technologies for mapping summer and winter Land Use/Land Cover features in Cuenca de la Laguna Merín, Uruguay, while comparing the performance of Random Forests, Support Vector Machines, and Gradient-Boosting Tree classifiers. The materials include Sentinel-2, Sentinel-1 and Shuttle Radar Topography Mission imagery, Google Earth Engine, training and validation datasets and quoted classifiers.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Plant and Soil Sciences, University of Pretoria, Hatfield, 0001, Pretoria, South Africa.
In recent decades, natural rangelands have emerged as vital sources of livelihood and ecological services, particularly in Southern Africa, supporting communities in developing regions. However, the escalating global demand for food, driven by a growing human population, has led to the extensive expansion of cultivated areas, resulting in continuous nutrient leaching in rangelands. To ensure the long-term viability of these ecosystems, there is a need to develop effective approaches for managing and monitoring the seasonality of forage quality.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Grassland and Natural Landscape Sciences, Poznań University of Life Sciences, 11 Dojazd St, 60- 632, Poznań, Poland.
Grasslands, being vital ecosystems with significant ecological and socio-economic importance, have been the subject of increasing attention due to their role in biodiversity conservation, carbon sequestration, and agricultural productivity. However, accurately classifying grassland management intensity, namely extensive and intensive practices, remains challenging, especially across large spatial extents. This research article presents a comprehensive investigation into the classification of grassland management intensity in two distinct regions of Poland, NUTS2 - namely Podlaskie (PL84) and Wielkopolskie (PL41), by integrating data from Sentinel-1 and Sentinel-2 satellite imagery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!