Borane and heteroborane clusters have been known as neutral or anionic species. In contrast to them, several ten-vertex monocationic and dicarbaborane-based systems have recently emerged from the reaction of the parent bicapped-square antiprismatic dicarbaboranes with N-heterocyclic carbenes followed by the protonization of the corresponding intermediates. The expansion of these efforts has afforded the very first -dicationic octahedral phosphahexaborane along with new monocationic pnictogenahexaboranes of the same shapes. All are the products of the one-pot procedure that consists in the reaction of the same carbenes with the parent -1,2-PnBBr (Pn = As, P). Whereas in the case of phosphorus such a monocation appears to be a mixture of stable intermediates, and arsenahexaboranyl monocation has occurred as the final product, all of them without using any subsequent reaction. The well-established DFT/ZORA/NMR approach has unambiguously confirmed the existence of these species in solution, and computed electrostatic potentials have revealed the delocalization of the positive charge in these monocations and in the very first dication, namely within the octahedral shapes in both cases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10305729 | PMC |
http://dx.doi.org/10.1039/d3ra03665k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!