A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluation of Vancomycin Area Under the Concentration-Time Curve Predictive Performance Using Bayesian Modeling Software With and Without Peak Concentration: An Academic Hospital Experience for Adult Patients Without Renal Impairment. | LitMetric

Background: The revised U.S. consensus guidelines on vancomycin therapeutic drug monitoring (TDM) recommend obtaining trough and peak samples to estimate the area under the concentration-time curve (AUC) using the Bayesian approach; however, the benefit of such two-point measurements has not been demonstrated in a clinical setting. We evaluated Bayesian predictive performance with and without peak concentration data using clinical TDM data.

Methods: We retrospectively analyzed 54 adult patients without renal impairment who had two serial peak and trough concentration measurements in a ≤1-week interval. The concentration and AUC values were estimated and predicted using Bayesian software (MwPharm++; Mediware, Prague, Czech Republic). The median prediction error (MDPE) for bias and median absolute prediction error (MDAPE) for imprecision were calculated based on the estimated AUC and measured trough concentration.

Results: AUC predictions using the trough concentration had an MDPE of -1.6% and an MDAPE of 12.4%, whereas those using both peak and trough concentrations had an MDPE of -6.2% and an MDAPE of 16.9%. Trough concentration predictions using the trough concentration had an MDPE of -8.7% and an MDAPE of 18.0%, whereas those using peak and trough concentrations had an MDPE of -13.2% and an MDAPE of 21.0%.

Conclusions: The usefulness of the peak concentration for predicting the AUC on the next occasion by Bayesian modeling was not demonstrated; therefore, the practical value of peak sampling for AUC-guided dosing can be questioned. As this study was conducted in a specific setting and generalization is limited, results should be interpreted cautiously.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10345177PMC
http://dx.doi.org/10.3343/alm.2023.43.6.554DOI Listing

Publication Analysis

Top Keywords

trough concentration
16
peak concentration
12
peak trough
12
area concentration-time
8
concentration-time curve
8
predictive performance
8
bayesian modeling
8
peak
8
concentration
8
adult patients
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!