Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Climate change from anthropogenic carbon dioxide (CO) emissions poses a severe threat to society. A variety of mitigation strategies currently include some form of CO capture. Metal-organic frameworks (MOFs) have shown great promise for carbon capture and storage, but several issues must be solved before feasible widespread adoption is possible. MOFs often exhibit reduced chemical stabilities and CO adsorption capacities in the presence of water, which is ubiquitous in nature and many practical settings. A comprehensive understanding of water influence on CO adsorption in MOFs is necessary. We have used multinuclear nuclear magnetic resonance (NMR) experiments at temperatures ranging from 173 to 373 K, along with complementary computational techniques, to investigate the co-adsorption of CO and water across various loading levels in the ultra-microporous ZnAtzOx MOF. This approach yields detailed information regarding the number of CO and water adsorption sites along with their locations, guest dynamics, and host-guest interactions. Guest adsorption and motional models proposed from NMR data are supported by computational results, including visualizations of adsorption locations and the spatial distribution of guests in different loading scenarios. The wide variety and depth of information presented demonstrates how this experimental methodology can be used to investigate humid carbon capture and storage applications in other MOFs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.3c01251 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!